
AFIT/GE/ENG/93D-20

AD-A274 178

DTICSELE.CTE

IDENTITY VERIFICATION THROUGH

THE FUSION OF FACE

AND SPEAKER RECOGNITION

THESIS
John Gregory Keller

Captain, USAF

AFIT/GE/ENG/93D-20

93-30999

9.3 12 22 1 1 2 \$ •IIIIIIIIII
Approved for public release; distribution unlimited

AFIT/GE/ENG/93D-20

Identity Verification Through

the Fusion of Face and Speaker Recognition

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Acce,17 - -•

Requirements for the Degree of -r:

Master of Science in Electrical Engineering .

By
oKE.

John Gregory Keller, B.S.E.E., M.A.

Captain, USAF [X "

December, 1993 D7TC QUALIT'y rI ecTD 3

Approved for public release; distribution unlimited

Acknowledgements

I would first like to thank my committee members, Doctors Steve Rogers and Mark

Oxley, and Captain Dennis Ruck. A special word of gratitude goes to Doctor Rogers for

his inspiration and guidance throughout this research. His help made this effort into an

incredible learning experience, as well as a pleasurable one.

I also wish to thank "Mother" Dan Zambon for his unceasing efforts in keeping the

computer systems in the Signal Processing Laboratory up and running. His skill and

patience in keeping up with our endless demands and whining proved invaluable to this

entire undertaking.

Lastly, many thanks go to my fellow students. Thanks to the Pattern Recognition

crew, Captains Gary Shaxtle, Bob MacDonald, and Kim McCrae, Flight Lietenant Neale

Prescott, and Lieutenant Curtis Martin for keeping me on the right track. And thanks

to Captains Jay Cossentine and Warren Gool and their families for proving to be super

friends and keeping me sane through some trying times.

John Gregory Keller

ii

AFIT/GE/ENG/93D-20

Abstract

In this research, face recognition and speaker identification systems are each con-

verted into verification systems. The two verification systems are then fused to form a

single identity verification system. Finally, the use of the Kaxhunen-Lo~ve Transform

(KLT) for dimensional reduction is examined for suitability in the verification task.

The base face recognition system used the KLT for feature reduction and a back-

propagation neural net for classification. Verification involved training a net for each

individual in the database for two classes of outputs, 'Joe' or 'not Joe.' The base speaker

identification system used Cepstral analysis for feature extraction and a distortion measure

for classification. Verification in this case involved performing the KLT on the Cepstral

coefficients and then classifying using a two-class neural net for each individual, similarly

to the face verifier implementation.

KLT feature reduction is compared to alternative linear and non-lineax methods, and

the KLT is found to provide superior performance. The fusion of the two base verification

systems is shown to provide superior performance over either system alone.

iii

Table of Contents

Page

Acknowledgements ii

Abstract iii

List of Figures viii

List of Tables xi

I. Introduction 1-1

1.1 Background 1-1

1.1.1 Face recognition 1-3

1.1.2 Speaker Identification 1-6

1.2 Problem Statement 1-7

1.3 Research Objectives 1-8

1.4 Assumptions 1-8

1.5 Scope and Limitations 1-8

1.6 Approach/ Methodology 1-9

1.7 Conclusion 1-10

II. Literature Review 2-1

2.1 Introduction 2-1

2.2 Face Recognition 2-1

2.2.1 Segmentation of Faces 2-2

2.2.2 Recognition of Faces 2-3

2.3 Speaker Identification 2-11

2.3.1 Feature Extraction 2-11

2.4 Multiple Sensor Fusion 2-16

2.5 Conclusion 2-17

iv

Page

III. M ethodology 3-1

3.1 Introduction 3-1

3.2 Verification Building Blocks 3-1

3.2.1 Face Recognizer 3-1

3.2.2 Speaker Identifier 3-18

3.3 Conversion From Identification to Verification 3-21

3.3.1 Face Verifier 3-22

3.3.2 Speaker Verifier 3-23

3.4 Fusion of Face and Speaker Verifiers 3-24

3.5 Potential Improvements to the Face Verifier 3-24

IV. Results 4-1

4.1 Introduction 4-1

4.2 The Figure of Merit 4-1

4.3 Face Verification Dimensionality Reduction 4-4

4.3.1 Clustering in Two Dimensions 4-4

4.4 Speaker Verification Dimensionality Reduction 4-11

4.4.1 Clustering with Two Dimensions 4-11

4.5 Nonlinear Feature Transformation 4-17

4.6 Fusion of the Face and Speaker Verifiers 4-23

V. Conclusion 5-1

5.1 Introduction 5-1

5.2 Conversion From Recognition to Verification 5-1

5.2.1 Face Verifier 5-1

5.2.2 Speaker Verifier 5-2

5.3 Dimensionality Reduction 5-2

5.4 Face/Speaker Fusion 5-3

v

Page

5.5 Future Research 5-4

5.5.1 Face Segmentation 5-4

5.5.2 Multiple Day Problem 5-4

5.5.3 Nonlinear Dimensionality Transformation 5-5

5.6 Conclusion 5-6

Appendix A. Software Development A-1

A.1 Introduction A-i

A.2 Implementing the Face Verifier A-1

A.2.1 acquire A-i

A.2.2 train.net A-2

A.2.3 verify-face.net A-2

A.2.4 mlp.fuse A-3

A.3 Implementing the Speaker Verifier A-3

A.3.1 mu2eps A-3

A.3.2 filter A-3

A.3.3 formant A-3

A.3.4 refcof, spectrans A-4

A.3.5 select A-4

A.3.6 vqdes A-4

A.3.7 train.net A-4

A.3.8 verify.voice.net A-4

A.4 Implementing Verification Modifications A-4

A.5 Implementing the Identity Verifier A-4

A.6 Code A-5

A.6.1 acquire.c A-5

A.6.2 train-net.c A-9

A.6.3 face-net-coefficients.c A-24

vi

Page

A.6.4 voice-net.coefficients.c A-27

A.6.5 klt.routine.c A-29

A.6.6 fom.routine.c A-35

A.6.7 findjklspace.c A-42

A.6.8 verifyface.enet.c A-46

A.6.9 verify-voice.net.c A-53

A.6.10 verify-identity.c A-58

A.6.11 xnetpush.c A-60

Appendix B. Source Data B-1

Vita VITA-1

Bibliography BIB-i

vii

List of Figures

Figure Page

1.1. A basic pattern recognition system 1-4

1.2. Example of segmentation process using Gay's system (17) 1-5

2.1. Curvature changes found via the wavelet transformation of a hand-drawn

image (33) 2-5

2.2. Manjunath's technique applied to faces (33) 2-6

2.3. Intensity projection of a face (25) 2-7

2.4. Principle curvatures for a single face: magnitude (a) and direction (c)

of maximum curvature, magnitude (b) and direction (d) of minimum

curvature. Umbilic points axe marked in (c) & (d); filled circles axe points

with positive index and open circles are points with negative index (20) . 2-9

2.5. (a) Ridge lines: local maxima of (km... > thresh,), and (b) valley lines:

local minima of (kmin < thresh,). (20) 2-10

2.6. Three methods of fusing information from multiple sensors: a) Fusion of

Observations, b) Fusion of Decisions, c) Fusion of Probabilities 2-17

3.1. Eye point detection using McCrae's system (36) 3-2

3.2. Sample of source image before temporal wavelet decomposition. 3-3

3.3. Result of one level of temporal wavelet decomposition 3-4

3.4. A single artificial neuron (perceptron) 3-8

3.5. A fully connected, three layer neural net 3-9

3.6. Determination of the orthogonal feature space 3-16

3.7. The face recognition system used in this research 3-17

3.8. Four example eigenfaces produced by a training set consisting of six ex-

amples each of six different people 3-18

3.9. Training the speaker identification system 3-19

3.10. Ilustration of the overlap of speech frames (each frame '-30 milliseconds

long) 3-20

viii

Figure Page

4.1. Toy problem distribution 4-3

4.2. Clustering of six training classes (faces) using the eigen-dimensions pro-

ducing the minimum training error 4-5

4.3. Clustering of six test classes (faces) using the eigen-dimensions producing

the minimum training error 4-5

4.4. Clustering of six training classes (faces) using the eigen-dimensions cor-

responding to the two highest eigenvalues 4-6

4.5. Clustering of six test classes (faces) using the eigen-dimensions corre-

sponding to the two highest eigenvalues 4-6

4.6. Clustering of six training classes (faces) using the eigen-dimensions cor-

responding to the two highest Figures of Merit 4-7

4.7. Clustering of six test classes (faces) using the eigen-dimensions corre-

sponding to the two highest Figures of Merit 4-7

4.8. Original training image (a) reconstructed using two dimensions selected

by minimum error (b), eigenvalue (c), and figure of merit (d) 4-8

4.9. Face verification accuracy using two, four, six, and eight dimensions se-

lected by minimum error order, eigenvalue order, and figure of merit order. 4-10

4.10. Clustering of six training classes (speakers) using the eigen-dimensions

producing the minimum training error 4-12

4.11. Clustering of six test classes (speakers) using the eigen-dimensions pro-

ducing the minimum training error 4-12

4.12. Clustering of six training classes (speakers) using the eigen-dimensions

corresponding to the two highest eigenvalues 4-13

4.13. Clustering of six test classes (speakers) using the eigen-dimensions cor-

responding to the two highest eigenvalues 4-13

4.14. Clustering of six training classes (speakers) using the eigen-dimensions

corresponding to the two highest Figures of Merit 4-14

4.15. Clustering of six test classes (speakers) using the eigen-dimensions cor-

responding to the two highest Figures of Merit 4-14

ix

Figure Page

4.16. Speaker verification accuracy using four, six, eight, and ten dimensions

selected by minimum error order, eigenvalue order, and figure of merit

order 4-16

4.17. Toy data set used for testing against the nonlinear transformation net. 4-18

4.18. Transformed toy data 4-18

4.19. Transformed face data (100 iterations) 4-19

4.20. Transformed face data (200 iterations) 4-20

4.21. Transformed face data (400 iterations) 4-20

4.22. Transformed face data (500 iterations) 4-21

4.23. Transformed face data (700 iterations) 4-21

4.24. Transformed Five Class Problem 4-23

x

List of Tables

Table Page

1.1. Applications for Positive Identification Systems (42) 1-2

2.1. Preprocessing Techniques for Speaker Recognition Feature Extraction (9) 2-12

2.1. (cont'd) Preprocessing Techniques for Speaker Identification Feature Ex-

traction 2-13

2.2. Classification Techniques for Speaker Recognition (9) 2-14

2.2. (cont'd) Classification Techniques for Speaker Recognition 2-15

4.1. Classification accuracy of KLT vs FoM 4-4

4.2. Face Acceptance/Rejection Accuracy 4-9

4.3. Speaker Acceptance/Rejection Accuracy 4-15

4.4. Accuracy of fused test classes 4-24

4.5. Fused Identity Verification Accuracy. 4-25

4.6. Accuracy of fused test classes 4-26

B.1. Face verification accuracy when the subject's claimed identity is his true

identity (two dimensions) B-1

B.2. Face verification accuracy when the subject's claimed identity is not his

true identity (two dimensions) B-1

B.3. Face verification accuracy when the subject's claimed identity is his true

identity (four dimensions) B-2

B.4. Face verification accuracy when the subject's claimed identity is not his

true identity (four dimensions) B-2

B.5. Face verification accuracy when the subject's claimed identity is his true

identity (six dimensions) B-3

B.6. Face verification accuracy when the subject's claimed identity is not his

true identity (six dimensions) B-3

xi

Table Page

B.7. Face verification accuracy when the subject's claimed identity is his true

identity (eight dimensions) B-4

B.8. Face verification accuracy when the subject's claimed identity is not his

true identity (eight dimensions) B-4

B.9. Speaker verification accuracy when the subject's claimed identity is his

true identity (four dimensions) B-5

B.10. Speaker verification accuracy when the subject's claimed identity is not

his true identity (four dimensions) B-5

B.11. Speaker verification accuracy when the subject's claimed identity is his

true identity (six dimensions) B-6

B.12. Speaker verification accuracy when the subject's claimed identity is not

his true identity (six dimensions) B-6

B.13. Speaker verification accuracy when the subject's claimed identity is his

true identity (eight dimensions) B-7

B.14. Speaker verification accuracy when the subject's claimed identity is not

his true identity (eight dimensions) B-7

B.15. Speaker verification accuracy when the subject's claimed identity is his

true identity (ten dimensions) B-8

B.16. Speaker verification accuracy when the subject's claimed identity is not

his true identity (ten dimensions) B-8

xii

Identity Verification Through

the Fusion of Face and Speaker Recognition

I. Introduction

The automated recognition of individuals is an area of great interest to both the

military and the commercial communities. Instilling such a capability into a machine

would benefit many diverse activities, such as validating the identity of an Automatic Teller

Machine user or distinguishing a terrorist within a bustling airport crowd. A recognition

system could serve as vital a function as protecting our national security by ensuring only

authorized personnel are granted access to restricted data in government computer systems.

It could also perform as trivial a function as recognizing and greeting the user upon startup

of the latest computer game. Table 1.1 provides a listing of possible applications (42).

Though humans are able to perform individual recognition with relative ease, the

challenge of automating this function has been daunting researchers for over four decades.

This is not to say that all work in the area has been fruitless; in fact, there has been

considerable success in finding solutions to certain elements of the problem. Unfortunately,

even with those successes, there is currently no automated, autonomous system capable of

accurately and consistently identifying individuals in real time. Such a system would find

a ready market in today's world.

In the remainder of this chapter, some background on past and ongoing research

in the fields of face and speaker recognition will be provided, as well as a statement of

the problem to be investigated in this research. Objectives, assumptions, and known

limitations will then be outlined, followed finally by a description of the methodology

which will be observed in the performance of this research.

1.1 Background

This section contains a brief discussion of the application of pattern recognition

techniques to face recognition and speaker identification and outlines some past and present

1-1

Table 1.1 Applications for Positive Identification Systems (42)

ACCESS TO RESTRICTED AREAS

Airport Cargo, Ticket and Baggage Areas
Airport Control Towers, Refueling and Maintenance Areas
Embassies and Corporate Offices in Foreign Countries
Nuclear Facilities, Conventional Power Stations and Grid
Control Stations
Munitions and Hazardous Materials Storage Areas
Corporate Archives and Computer Centers
Engineering Labs
Blood Banks, Tissue Banks and Forensic Labs
Research and Development Facilities

ACCESS TO DISTRIBUTION OF GOODS AND
SERVICES

Automatic Teller Machines - Cash
Point of Sale Terminals - Goods and Credit
Welfare Agencies - Food Stamps and Cash
Drug and Other Clinics - Medication
Computer Networks - Electronic Fund Transfers

ACCESS TO RESTRICTED INFORMATION

Company Proprietary Data, Plans and Forecasts
Government Reports and Regulations in Progress
Classified Government Files
Financial Securities Transactions
R & D Technical and Business Data
Medical and Personnel Records
Patent Applications
Wills and Personal Papers
Competitive Proposals

1-2

research in the field. Further details regarding this research will be provided in the review

of the literature.

Pattern recognition is an area of research pertaining to the ability of a system (bi-

ological or mechanical) to perceive and identify certain characteristics of some target, be

the target an image, a sound, or any other piece of data, and determine the classification

of the target from those characteristics. The human brain is an excellent example of a

biological pattern recognition system. For instance, we find it very easy to differentiate

between the letter 'Z' and the number '2,' though both these symbols contain several com-

mon characteristics. Our brains provide us the capability of selecting those characteristics

that make the symbols different. Such characteristics are classically know as features, and

the success of a pattern recognition system depends on its ability to extract appropriate

and sufficient features to perform robust classification. As with other recognition systems,

both face and voice recognizers must use features that allow discrimination of one target

from another, yet will also allow recognition of different occurrences of the same target.

The problem of pattern recognition has historically been broken down into three sub-

problems: segmentation, feature extraction, and classification (63). Segmentation involves

determining the area of interest in a collection of data; that is, determining what region

in the data space may contain targets. Feature extraction involves determining which

features within (or derived from) the data set will be used to perform the classification.

In the classification step the target is identified as belonging to a certain class (or in some

recognition systems may be identified as not belonging to a certain, or any, class). Figure

1.1 pictorially illustrates an elementary pattern recognition system.

1.1.1 Face recognition. The segmentation problem in face recognition has tra-

ditionally attracted the least attention, and in most research efforts the target faces have

been manually segmented; in other words, target faces within images were manually cen-

tered before presentation to the feature extraction mechanism. In an Air Force Institute of

Technology (AFIT) thesis, Kevin Gay tackled the segmentation problem, and developed a

system which used two consecutive frames from a videotape of a subject to determine the

location of the face within an image (17). His technique was based on the fact that the

1-3

SDim

Raw Dtamtain Salimt ClIE"
Data Targtdintfftd Fuib. NtA

Figure 1.1 A basic pattern recognition system.

head will always be undergoing some relative motion, and subtracting one frame from the

other will specify that motion. That information can then be used to determine where the

head, and thus the face, can be found within the image.

Figure 1.2 presents an example of the segmentation process. The two photographs are

consecutive frames from a videotape sequence, and the "motion" image is the difference

of the two frames. The motion image is filtered to remove extraneous noise, and then

presented to an algorithm that fills in all pixels below any detected motion. The result is

a mapping in space that defines where the face lies. Note that this application depends

on a cooperative target with face turned toward the camera, and the images obtained can

only contain the single target. These are not limitations if trying to verify an individual's

identity in a cooperative situation, but adaptation would be required to use such a system

with a non-cooperative target or with a specific target within a crowd.

1-4

AMAGE I IMAGE 2 IMOTION"

.... l(_.

IiI

L i ii'i:1 ? ""

MEDN FILTERING

I _ _1
OUTLINE I OUTLINE 2 OUTLINE 3

JFWD TOP PLXELS) (GROUP COLWUMS) (REMOVE SPKES)

Figure 1.2 Example of segr..a 4 ation process using Gay's system (17).

The feature extraction problem has been it--ked in two general ways. The first

methodology relies on extraction and examination of specific facial features to determine

the individual to whom the face belongs. Mannaert and Oosterlinck proposed a repre-

sentative implementation of this method, basing their feature discriminants on geometric

proportions, surface properties, and iconic features of the face (34).

1-5

The second method uses a holistic approach, in which the faces are examined as

a whole. With this technique, it may be appropriate to think of the face as being a

feature in itself, as specific features within the face image are not extracted. Turk and

Pentland, at the Massachusetts Institute of Technology, have been strong proponents of

this methodology, contending that "individual facial features such as the eyes or nose may

not be as important to human face recognition as the overall pattern capturing a more

holistic encoding of the face" (65). They have developed the concept of "eigenfaces," which

are the recognition system's representations of the variations in a set of face images. This

information is used to encode and compare the facial features of individuals. Researchers

at AFIT have implemented a neural network-based, holistic recognition system relying on

the eigenface approach. In a thesis by Ken Runyon, we find that the system performs fairly

well for some tests, but does have limitations, such as a marked degradation in performance

when presented with a target image that was obtained one or more days after the image

on which the system was trained (52).

Gordon recently proposed a relatively unique approach to face recognition: using

depth and curvature features of the face to determine identity (20). The strategy is similar

to the standard feature extraction of Mannaert and Oosterling, but relies on a completely

different feature set that is not restricted to two dimensions in space. Gordon developed

and implemented a system at Harvard University based on the use of a rotating laser

scanner system to obtain range (depth and curvature) data from subjects. She reports

excellent classification capability when the three-dimensional features are presented to the

recognizer. Range data has often been used in other pattern recognition problems, but

only recently has equipment with the required accuracy become available at acceptable

cost.

1.1.2 Speaker Identification. Automated speaker recognition is dependent on

features found within acoustic speech signals for classification. Many speaker recognition

systems use linear predictive analysis, a method in which the speaker's speech patterns

are used to develop a parametric model; new instances of speech can then be compared

against this model to determine whether they match the model to some degree of accuracy.

1-6

The major deficiency of this approach is the model's poor performance in noise. This

occurs because some of the primary assumptions under which the model was developed are

violated when the speech signal is corrupted by noise (39:165). Another approach is to use

an auditory model, in which speech is converted to a representation of the auditory nerve

firing patterns found within the human aural system. In other words, a cochlear model is

developed based on the workings of the human cochlea, and acoustic speech presented to

this model is recoded to simulate the firing of nerves along the basilar membrane within

the auditory system. Because this approach attempts to emulate a system that is known

to work well (human hearing), the hope is that more robust recognition can be performed.

In an AFIT thesis by John Colombi, such a cochlear model is implemented and compared

to the traditional Linear Predictive Coding approach (10).

1.2 Problem Statement

In the course of this research, an implementation will be developed that fuses deriva-

tions of the existing AFIT face recognition and speaker identification systems to provide a

user verification capability. The bulk of the research will be concentrated on implementing

this fusion and determining whether the technique currently being used to extract fea-

tures from faces is appropriate for the task. Alternate methods for feature extraction will

be explored. The system performance will be measured using two metrics: classification

accuracy, and identification speed. The classification accuracy will be a function of the

robustness of the system, and will be based not only on identification accuracy, but also

on rejection inaccuracy; that is, both mistaken recognition and mistaken rejection will be

considered. Recognition speed will be based on the perception of "acceptable" time for

recognition. This is a somewhat subjective measure, imposed by the probability that a

system user will only accept a recognition system if it performs with a certain relative

speed. Of these two measurement metrics, classification accuracy will be considered the

more important.

1-7

1.3 Research Objectives

The primary objectives of this research are to fuse two single-sensor recognition

systems (face and voice) into a single identity verification system and to attempt to improve

the classification performance of the face identification portion of the fused system. The

former will require that methods be developed to convert the individual recognition systems

into verification systems, and then that the outputs of these verification systems be fused

in some probabilistic space. Improvements to the system will be attempted by determining

the appropriateness of the current feature extraction method and developing new ones for

testing.

1.4 Assumptions

"* Methods can be developed to convert the existing recognition systems (identifying

an individual as a member of a data base) into verification systems (verifying that

the individual is who he/she claims to be).

"* The outputs of the individual verification systems will be, or will be directly related

to, post (posteriori) probabilities. This will allow simple probabilistic fusing.

"* This research will depend on a cooperative subject. The orientation of the head

in the image will be face forward, and the subject will be alone and close enough

to the camera to allow either manual or automatic segmentation. The subject will

speak into a microphone when prompted, and the acoustic environment will not be

excessively noisy.

1.5 Scope and Limitations

The scope of this research will be limited to exploring methods of converting and

fusing the two recognition systems and analyzing the use of an alternate feature set for

presentation to the face verifier. The performance may be limited by the accuracy of the

computational and image-capturing hardware provided.

1-8

1.6 Approach/ Methodology

Existing software will be modified or new software will be developed and implemented

on a Sun SPARCstation2 . The existing face segmentation software will be retained in

whole or in part, as will classification algorithms developed during previous AFIT face

recognition research efforts. The face recognition system used will extract features using

the Karhunen-Loeve Transform (KLT) technique as outlined in Chapter 2 of this thesis,

and will train a back-propagation, multi-layer perceptron to perform the classification

task. Speaker recognition algorithms developed at AFIT will also be retained in whole or

in part; Cepstral analysis will be used for for feature extraction and a distortion metric for

classification. The development software used will be a UNIX implementation of ANSI C.

The following tasks will be accomplished during the course of the research effort:

1. Convert the existing AFT holistic face recognition system into a holistically-based

face verification system. Perform tests using this system to develop a baseline against

which to measure modified or newly developed systems and capabilities.

2. Convert the existing AFIT auditory model-based speaker identification system into a

speaker verification system. As with the face verifier, perform tests using this system

to develop a baseline against which to measure modified or newly developed systems

and capabilities.

3. Develop the algorithms necessary to fuse the two verification systems into a single

user verification system.

4. Develop the algorithms for testing and analyzing the use of an alternate feature set

for face verification based on a calculated Figure of Merit (FoM).

5. Develop the algorithms for testing and analyzing the use of an alternate feature set

for face verification based on nonlinear dimensional transformation.

6. Measure the performance of each of the verification systems alone and the fused

verification system KLT/FoM- based face feature sets.

1-9

1. 7 Conclusion

The systems developed during this research effort will help further understanding of

the face recognition and speaker identification processes, bringing us one step closer to our

goal of constructing a reliable and accurate mechanism for autonomous identity verifica-

tion. Some uses for such a mechanism were briefly mentioned in the introduction to this

chapter, but there exist many other activities which will also benefit; indeed, it should be

expected that an identity verification system will serve purposes of which we have not yet

conceived. But until the day comes that such a capability exists, researchers will continue

the quest for increased knowledge about the mechanics of recognition through efforts sim-

ilar to the one to be undertaken here.

In the next chapter, we shall review recent and current research into the areas of face

recognition, speaker identification, and multi-sensor fusion. Methodologies and motivations

for user verification will be presented, as well as a brief survey of current implementations.

1-10

I. Literature Review

2.1 Introduction

Security issues play an increasingly important role in both the long- and short-term

operation of the government. The ability to protect data within the electronic confines

of a computer system becomes vital as one considers the threat to national security that

could ensue if unauthorized agents were given improper access. The main thrust in the

area of computer security has thus been to develop procedures to ensure only authorized

users are permitted access to important data. These procedures have traditionally ranged

from implementing simple password protection schemes to verifying some physical device,

such as an access card, and even to requiring manual identification and verification of users

by security guards. The problem with the first method is that passwords can be "broken,"

and the second method carries with it the assumption that thZ access device will always

be with the authorized user. The third method requires human security guards, who by

nature are extremely adept at providing accurate individual authentication, but will tend

to perform increasingly poorly as more persons are added to the database of authorized

users (9). Therefore, it is natural that we look for some method of automating the user

verification process, thereby providing increased security.

In this review, current research into automated identification and verification of in-

dividuals will be examined. Research being performed in the areas of recognition and

identification of faces will first be surveyed, followed by a review of efforts in the speaker

identification arena. Finally, methods used to fuse the outputs of multiple sensor systems

will be presented.

2.2 Face Recognition

The recognition of a familiar face is something we humans take for granted. We

perform this task with admirable precision, and only seldom is any effort involved. But

for all that natural skill, no one really understands precisely how we perform recognition.

Recent research indicates the process of face recognition involves at least two major steps

(21). The first is known as segmentation, in which we are alerted to the fact that there is

2-1

a face within our visual field. At this stage, recognition of the person as an individual has

not occurred; we simply notice the face. In the next step we actually recognize the face as

being familiar to us. Efforts to mimic these biological processes with machines have met

with varying degrees of success, and in the following sections some of these efforts will be

outlined.

2.2.1 Segmentation of Faces. The problem of determining whether or not a face

is present in the visual field has not been extensively addressed in the literature. Most face

recognition research has assumed the face is known to be there, and is already pre-processed

(scaled, rotated, and positioned) for introduction to the recognition mechanism itself.

Govindaraju, Sher, et al, studied the problem of locating faces in newspaper photographs,

developing a geometric model of the prototypical human face and scanning photographs

for images approximately representative of that model (2 1:p551). The technique was quite

successful, but constraints placed on the problem included:

1. Frontal face view required in photograph.

2. Face must be upright with negligible tilt.

3. Faces must not be occluded by other objects.

4. Face must be at least some minimum size.

5. Image must have some minimum resolution.

6. Number of faces to be found must be known.

Though these restrictions may be well adapted to finding faces in newspaper pho-

tographs, they are not likely to be adequate for real-world "face in a crowd" capturing.

A more complex pattern-matching scheme has been proposed by Seitz and Bichsel

(57). Their approach involves performing a hierarchical search for features in progressively

finer resolution images (images containing progressively higher spatial frequency content),

with the assumption that at different levels of resolution, different features will be more

important. For instance, at low resolutions (about two Hz), only the broad outline of the

head is searched for, a horizontal oriented line in the upper part of the image and two

2-2

vertical lines at the left and right sides of the image. At finer resolutions, the nose is

localized, and then the eyes and pupils. This proved to be a relatively robust method, and

was somewhat invariant to rotation; once the pupils were found, the planar rotation of the

head could be calculated, and the face could be rotated into a standard position for further

processing. The particular application presented did not account for scaling differences,

but the authors state that in principle, the information was available to scale the face for

an unknown size.

In an Air Force Institute of Technology thesis by Kevin Gay, we are shown that

the use of motion analysis may be a suitable technique for face segmentation (17). His

approach was to capture two images of a subject from a fixed camera in rapid succession,

then perform a frame-to-frame subtraction to determine any motion. Based on the fact

that humans cannot keep their heads perfectly still, he hypothesized that movement in

the image could correspond to the presence of a face. After enhancing the motion image

(the difference between the two frames), it was analyzed for detection of a face, and if

one was found it was cut from the image and resized to create a standard size vector for

input to the face recognition system. This approach proved to be fairly successful, but

not flawless. Gay found that the outlines of the motion images were not consistent, but

could not determine the cause of the inconsistency. He felt that given a better method of

finding the motion image, standardization and face discrimination capability could likely

be improved.

2.2.2 Recognition of Faces. There are currently two major approaches being

examined by researchers into face recognition techniques. The first relies on extraction

and examination of specific facial features to determine the individual to whom the face

belongs, while the second extols a holistic approach, examining the face as a whole.

2.2.2.1 Feature Extraction. Facial Geometric Proportion Mannaert

and Oosterlinck proposed a representative implementation of the first method, basing

their feature discriminants on geometric proportions, surface properties and iconic features

(34). The use of geometric proportions is based on the idea that certain distances within

the human face may vary between people, but are quite invariant for the same person.

2-3

Examples include the vertical distance from the eyes to the upper side of the mouth and

the horizontal width of the face at the nose.

Surface, or texture, characteristics depend on extraction of "smoothness" information

about certain areas of the face, such as the forehead or the cheek, and are calculated by

relating the mean intensity gradient at a particular region to the entropy of the histogram

in that region. Iconic features depend on characteristics of certain subimages of the original

image. The shape of the chin, for example, could be a valid, discriminable feature. Another

textural proposed by the authors, but not applied during the study described, is a measure

of the standard deviation of the fractal dimension, to determine the presence of hair.

Once the features were extracted from the image, they were correlated with the

features of all faces present in the database. Measures of similarity and Euclidean distance

were accomplished. and the system identified the face in the image by selecting the best

match. Preliminary results from the use of this system have been promising, and the

authors intend to continue development with a larger database of faces, more ditierent

sensors for feature detection, and various other enhancements.

Biologically Motivated Feature Extraction A somewhat different method of

feature extraction is presented by Manjunath, whereby features are extracted without any

assumptions concerning face structure (33). His work is biologically motivated, in the

sense that it attempts to emulate the human visual system's ability to recognize images

that don't necessarily lend themselves to simple geometrical representations.

The development of the feature detection model is motivated by the early
processing stages in the visual cortex of mammals. The cells in the visual
cortex can be classified into three broad functional categories: simple, complex,
and hypercomplex. Of particular interest here is the end-inhibition property
exhibited by the hypercomplex cells. This property refers to the response of
these cells to short lines and edges, line endings, and sharp changes in curvature
(e.g., corners). Since these correspond to some of the low level salient features
in an image, these cells can be said to form in some sense a low level feature
map of the intensity image (33:p374).

Similarly to Seitz and Bichsel's face segmentation work, Manjunath proposes the extrac-

tion of oriented feature information at different scales. He obtains the information by using

Gabor wavelet transformations on the original intensity image, where Gabor functions are

2-4

simply Gaussians modulated by complex sinusoids. The wavelet transformation decom-

poses the original signal into a linear combination of basis functions, which are obtained

from simple dilations and translations of a "mother" wavelet (for an in-depth treatment of

wavelet transform theory, see (8)). The decomposed signals represent different spatial res-

olutions, and the information contained within the different levels can be used to localize

curvature changes. An example of such features found by this method is seen in Figure 2.1,

where the input image is a hand-drawn hammer, and the processed image shows a star at

each location of changing curvature. Figure 2.2 shows the same technique applied to two

face images. The curvature information at those points represents the features within the

image, and an appropriate cost function is used to determine whether two different feature

maps represent the same face.

Figure 2.1 Curvature changes found via the wavelet transformation of a hand-drawn
image (33).

Facial Thermographic Feature Extraction Prokoski, et al, have presented an

identification system based on the extraction of facial thermographic features (42). They

claim that

• . . the thermal measurements of individuals under repeated conditions are
highly repeatable. The mean and standard deviation temperature of a group
of individuals over a period of several months were 30.80, +/- 0.0320 C with a
coefficient of variation of 0.1

2-5

_J

Figure 2.2 Manjunath's technique applied to faces (33).

The amount of information contained within a thermographic image of a face is quite large,

and though the authors have not performed extensive testing, they feel the information is

sufficient to discriminate between and identify individuals.

Three-dimensional Feature Extraction Jia and Nixon propose a method of ex-

tracting profile information from a two-dimensional, front-view of a face, and using that

information as additions to a standard geometrically based feature set (25). The authors

assume the position of the eyes within the image have been located with a high degree of

accuracy, and thus the center, vertical line of the face can be found. They then calculate

the intensity projection along the direction of that line, where the intensity projection

p.(z) of image f(x, z) along the line z in direction w is simply

Pw(Z) = f f(x, y)dw

Though not precisely the profile of the face, this projection represents the relation between

the intensity peaks and valleys along the center line of the face. Figure 2.3 shows an

example of this intensity extraction applied to a face. Seven series of feature data were

derived from this projection:

2-6

1. the resampled projection. p(i).

2. the autocorrelation of p(i).

3. the Dyadic autocorrelation function of p(i).

4. the Fourier transform of p(i).

5. the Walsh transform of p(i).

6. the Fourier power spectrum of p(i).

7. the Walsh power spectrum of p(i).

Figure 2.3 Intensity projection of a face (25).

The authors feel that these features, combined with traditional geometrical measure-

ments, provide superior discrimination capability to feature sets consisting of geometrical

measurements alone. Their results support this conclusion, though the effect of hair falling

on the forehead, beard and moustache growth, and other physical changes to the pseudo-

profile were not addressed.

Gordon has proposed a face recognition methodology based on the extraction of

depth and curvature features from a face. The major difference between this method and

most other feature extraction methods is that features here are actually based on depth

2-7

measurements, and not on intensity values. Because intensity based image descriptions

depend on intensity variations, low contrast features such as cheeks and foreheads are very

difficult, if not impossible, to describe. This approach is also different from biologically

motivated ones, because "although it is unlikely that humans base their representation or

comparison of shape on the accurate perception of depth, we propose the use of depth data

because at our current state of technology it is the most straight forward way to input or

record complex shape information for machine analysis."(20:p235) A rotating laser scanner

was used to extract the depth information, which in turn generated a surface embedded in

a three-dimensional space. Curvature measurements across the surface were then obtained

and templates were produced corresponding to specific physical facial features. See Figure

2.4 for an example of the curvature maps obtained, and Figure 2.5 for local maxima/minima

plots derived from the maps. Face identification could then be accomplished by simple

template matching or by measuring the volumetric difference between a test surface and a

known surface when both were normalized with respect to a small set of common feature

points.

2-8

+:)

'IRt

: •::••:••• --.. J .•%i

Figure 2.4 Principle curvatures for a single face: magnitude (a) and direction (c) of
maximum curvature, magnitude (b) and direction (d) of minimum curvature.
Umbilic points are marked in (c) & (d); filled circles are points with positive
index and open circles are points with negative index (20).

2-9

Figure 2.5 (a) Ridge lines: local maxima of (km,., > thresh,), and (b) valley lines: local
minima of (kmin < thresh,). (20).

2.2.2.2 Holistic Recognition. Turk and Pentland, at the Massachusetts

Institute of Technology, have been quite active in pursuit of the application of holistic

recognition techniques to the face recognition problem. They contend that "individual

facial features such as the eyes or nose may not be as important to human face recognition

as the overall pattern capturing a more holistic encoding of the face" (65). This approach

leads to less dependency on detailed geometries, and may lead to simpler computational

models well suited to use in certain constrained environments such as offices. In their

scheme, face images were decomposed into characteristic feature images, called eigenfaces.

These eigenfaces occupy unique positions in what is known as face-space, and identification

is made by projecting the image to be identified into the face-space, then determining the

eigenface that is closest to the test face. Turk and Pentland claim the approach has

advantages over other face recognition methodologies in speed and simplicity, learning

capacity, and insensitivity to small or gradual changes in the face image.

Fleming and Cottrell developed a similar system, training a back-propagation neural

network to automatically extract holistic features from face images and save them as

"holons," similar to the eigenfaces of Turk and Pentland (14). The resultant network could

recognize new images of familiar faces, categorize unknown images as to their "faceness,"

and to a degree categorize faces as to their gender.

Researchers at AFIT have also implemented a neural network based, holistic recogni-

tion system (52, 27, 17). Because the face verification portion of the system to be developed

2-10

for this thesis depends on the AFIT implementation, details of its operation will be pro-

vided in Chapter 3. In a thesis by Ken Runyon, we find that the system performs fairly

well for some tests, but does have limitations (52). The major one was in recognition

accuracy over multiple days of testing. That is, recognizing an image of a face taken at

a different time than the image the system was trained on. This was overcome to a large

extent by training the system with images taken over multiple days, which allowed the net

to capture a more general "view" of what the face looked like.

2.3 Speaker Identification

As with the recognition of human faces, we tend to take for granted our ability to

recognize the voice of a familiar person, even if the voice has been altered in some way

(changes in pitch or changes due to illness, for example). Indeed, according to Levinson

and Roe, humans are unable to appreciate the difficulties that speaker recognition poses

for a computer, since humans comprehend speech so easily (29). Two general schemes

are generally used for speaker identification, one based on extraction of features within an

utterance, and the other on the use of a model of the mammalian auditory system.

2.3.1 Feature Extraction. Most feature-based speaker identification systems rely

on some preprocessing of the acoustic speech signal, selecting features which attempt to

model the physical makeup of an individual's vocal tract and using those features to build

a database of known individuals (39). Many preprocessing methodologies have been used

in the past, and Colombi provides an excellent synopsis of those techniques in his 1992

thesis (9), reproduced here in Table 2.1.

Once the features have been extracted from the acoustic signal, it remains to classify

them, thereby determining with what probability a test subject belongs to some class.

Again, Colombi has provided a summary of different classification techniques used over

the last several years (Table 2.2).

The speaker verification system to be implemented as part of this thesis effort will be

based on the recognition system developed at AFIT by Colombi. Details of that system,

2-11

Table 2.1 Preprocessing Techniques for Speaker Recognition Feature Extraction (9)

Feature Author (Date) Comments
Filterbanks Pruzansky (1963, 100Hz - 10KHz, various averages of (and

1964) between several) filterbank outputs over
time were examined (39).

Spectral Characteristics Wolf(1972) Nasal consonants, fricatives, v owels, pitch
and vowel duration (39).

Pitch Contours Atal(1972) Karhunen-Lo~ve transform on pitch con
tours (39).

Filterbank Correlation Li and Hughes(1974) Correlations among filterbank en ergies
(39).

LPC Cepstral Atal(1974, 1976) Comparison to log-area ratios, correlation
coefficients, LPC coefficients (2, 1).

Spectral Characteristics Sambur(1975) Formant frequencies, LPC Poles, pitch,
some temporal patterns (39).

Formants Goldstein (1976) Vowels, 199 ranked features (39).

Linear Prediction Sambur (1976) LPC, reflection, log-area ratios, found or-
thogonal reflection coefficients best (least
significant projections) (39).

Long-Term Statistics Markel (1977, 1979) Mean and standard deviation of pi tch,
reflection coefficients (39).

Mel Cepstral Davis and Mermelstein Cosine expansion of the spectrum, com-
(1980) parison to linear and LPC cepstral (13).

Delta Cepstral Furui(1981) Polynomial expansion over time (15).

Log Area Ratios Schwartz(1982) Examined different classifiers using spec-
tral log area ratios (56).

2-12

Table 2.1 (cont'd) Preprocessing Techniques for Speaker Identification Feature
Extraction

Feature Author (Date) Comments
LPC Cepstral Oglesby and Mason 10th order LPC derived cepstral (37).

(1990)

Line Spectral Pair Liu(1990) Several variants of LSP - Even, Odd,
Mean and Difference of LSPs (31).

Mel Cepstral and LPC Bennani (1990) 12th order LPC and Mel Frequency Cep-
stral, based on 24 triangular filters (4).

LPC Cepstral Gaganelis and Fran- 10th order LPC (16).
goulis (1990)

Delta LPC Cepstral Furui (1991) LPC cepstral, first order regression every
88 msec period (35).

Delta Cepstral /Cepstral Rosenburg (1990, 12th order cepstral and delta- cepstral
1991) coefficients, weighted using a sinusoidal

"lifter- (48, 49).

Mel Cepstral Oglesby and Mason 12 filterbanks, Mel frequency spaced (38).
(1991)

Eigenvector Analysis Bennani (1991) LPC and Mel cepstrum covariance, mean
and two eigenvectors (3).

Filterbanks Higgins (1991) Power output of 14 uniformly spaced fre-
quency banks (23).

Auditory Model Hattori (1992) Seneff auditory model mean rate response,
40 channels (22).

Delta Cepstral /Cepstral Tseng et al (1992) Linear combination of cepstral and delta
cepstral. Found cepstral alone performed
better recognition (64).

LPC Cepstral Savic and Sorensen 20th order cepstral derived from only 12th
(1992) order LPC (54).

2-13

Table 2.2 Classification Techniques for Speaker Recognition (9)

Classifiers Author (Date) Speakers, ID %, Comments
Distortion Atal (1974) 10 speakers, 98% identification, Ma-

halonobis Distance using pooled intra
speaker covariance (2).

DTW Furui (1981) 20, Dynamic Time Warp distortion
measurement on fixed sentences (15).

K-means, Gaussian Schwartz (1982) Compared Gaussian classifiers to K-
Estimation means and Mahalonobis Distance,

non-parametric outperformed (56).

HMM Poritz (1982) Application of 5 state ergodic HMM
to speaker verification (40).

VQ Soong (1985) First Speaker dependent codebooks,
voiced and unvoiced speech (59).

VQ Soong (1988) 2 Codebooks, 1 instantaneous and 1
temporal (60).

MLP Oglesby and Mason (1990) 10, 92%, Backprop learning, single
layer with 16 - 128 hidden nodes,
Equal recognition to VQ s5.1.10.

K-means/ LVQ Bennani et al (1990) 10, 95 - 97% (4).

HMM Rosenburg et al (1990) 20, 98.8 - 99.1%, Used k-means to seg-
ment the utterance into acoustic seg-
ment units, also examined phoneti-
cally labeled speech (48).

HMM Savic and Gupta (1990) 43, 97.8%, 5 HMM models represent-
ing broad classes (55).

GMM Rose and Reynolds (1990) 12, 89%, Only 1 sec of test speech (46).

2-14

Table 2.2 (cont'd) Classification Techniques for Speaker Recognition

Classifiers Author (Date) Speakers, ID %, Comments
Binary Partition Rudasi and Zahorian (1991) 47, 100%, TIMIT corpus, need N(N-

1)/2 binary MLP classifiers. (51)
RBF NN Oglesby and Mason (1991) 40 ,89% true talker, different manner-

isms of speech. (38)
GMM Rose et al (1991,1992) 10, 77.8%, Integrated noise model into

GMM, GMM on Original clean speech
- 99.5 (46, 47) %.

Discriminator Higgins and Balder (1991) 24, 80% true talker, KING cor-
Counting pus, multivariate gaussian, count

wins/speaker summed over frames.
VQ Matsui and Furui (1991) 9, 98.5 - 99.0 %, Voice/Unvoiced or 2-

state HMM, New Distortion measure
(DIM), Talker variability normaliza-
tion (TVN) individually weights fea-
tures. (35)

HMM Rosenburg (1991) 20, 96.5 - 99.7%, Whole word L-to-R
HMM, text dependent (digits), com-
pared to VQ.(49)

Time Delay NN Bennani and Gallinari (1991) 20, 98%, First a Male / Female
TDNN, then a 10 output (speakers)
TDNN using 2 hidden layers (hierar-
chical). (3)

HMM, VQ, ANN Hattori (1992) 24, 100 %, TIMIT corpus (fe-
males), Predictive NN (recurrent)
within HMM, compared to VQ and
MLP classifiers. (22)

CPAM (GMM) Tseng et al (1992) 20, 98.3% identification, CPAM - Con-
tinuous Probability Acoustic Map,
mixtures of Gaussian kernels with and
without HMM. (64)

MLP Gong and Haton (1992) 72, 89 - 100%, Trained MLP to in-
terpolate between speaker utterances
(phoneme), needs labeled speech
(vowels).

VQ Kao et al (1992) 26 (51), 93.3% (67.6), KING corpus,
11 broad class codebooks of 10 vec-
tors, Needs labeled speech. (26)

2-15

as well as its modification to perform the verification function, will be provided in Chapter

3 of this document.

2.4 Multiple Sensor Fusion

Humans are able to quite easily integrate information from different senses (hearing

and sight, for example) and make decisions based on that integration. Combining informa-

tion in machines, however, can be somewhat more problematic. This task of automating

the integration of multiple sensors is commonly known as sensor fusion, and is defined by

Thomoupoulous as

. . . the process of integrating raw and processed data into some form of
meaningful inference that can be used intelligently to improve the performance
of the system, measured in any convenient and quantifiable way, beyond the
level that any one of the components of the system separately or any subset of
the system components partially combined could achieve. (62)

Three general schools of thought exist for the fusion of information from multiple

sensors, and are described in the following sections and illustrated in Figure 2.6 (28).

Fusion of Observations Each individual sensor i provides an observation vector si to a

centralized decision unit D that determines the decision probability

q = P w = 1 1 s i, -- . ,. 8) = s , ---, .)

where w is the class being considered. q is provided to a decider within D that will make

the classification decision.

Fusion of Decisions With this method, each sensor i is provided with its own forecaster,

Hi, that determines the single sensor-based probability

Xi = P(w = 11s,) = H,(s,).

xi is then mapped by a decider Di into a binary decision vector (ai,-- .,a,), which is

presented to a fusion rule prescribing the final decision. Reibman and Nolte (44, 43) and

Chair and Varshney (7) have proposed methods to optimize both the fusion rule and the

individual sensor decision unit rules.

2-16

Fusion of Probabilities As with the second method, each sensor i is provided with

it's own forecaster Hi that maps an observation vector into a classification probability

xi = P(w•= 11 s) = Hi(s,). The resultant vector of the individual probabilities is then

input into a fusion rule H that provides the posteriori fused classification probability

p P(w = llxl,' .,x,,) - H(HI(sl)," .,H,(sn)).

-- Centralized Decision Unit

b. Localized Decision Unit

C. Centralized Decision Unit

Sensor i s . Foreater t• Poaii7 I_ Decider Iiýo

~~~~. ..... ..... .... ..... .... ........ ... . . .

ij FFo°a Ioin:

Figure 2.6 Three methods of fusing information from multiple sensors: a) Fusion of Ob-
servations, b) Fusion of Decisions, c) Fusion of Probabilities

2.5 Conclusion

This search of the current literature has briefly outlined research efforts into the ar-

eas of face recognition, speaker identification, and multi-sensor integration or fusion. The

latter two areas have received significant attention over the last few years, and research

into the first is becoming increasingly prevalent. We have found that identification systems

2-17



based on either faces or speech have seen considerable success, but that all of the problems

inherent to such a task have not yet been solved. We have not found any attempt to com-

bine the capabilities of face and speech recognition systems into a single, cohesive unit,

but have seen that the general problem of fusing information from multiple sources has

been addressed and successful solutions have been developed; such methodologies should

be applicable to the identity verification problem being addressed by this thesis.

The next chapter shall present the methodology to be followed in the performance

of this research, and Appendix A provides the actual implementation techniques used and

the software developed and modified for this effort.

2-18



III. Methodology

3.1 Introduction

The system to be developed in this research is based to a large degree on previous

and concurrent AFIT thesis efforts. The fundamental building blocks include a neural-net

based face recognizer, detailed in theses by Krepp, Runyon, and Gay (27, 52, 17), and

a distortion based speaker identifier, described by Colombi (9). These systems will be

modified to perform the verification task, and will then be fused to form a multiple sensor

verification mechanism. Techniques to enhance the operation of the face verifier portion

of the system will be explored in this thesis; efforts to improve the speaker verifier will be

addressed in a collateral thesis by Prescott (41).

The remainder of this chapter will be organized as follows: First, the basic identifi-

cation systems will be described, followed by a description of the efforts needed to modify

the systems to function as verifiers. Next, the technique to be used to fuse the disparate

verification systems will be presented, and finally methods to improve the performance of

the overall system will be addressed.

3.2 Verification Building Blocks

3.2.1 Face Recognizer. The face recognizer used in this research is based on the

system developed by Turk and Pentland at the Massachusetts Institute of Technology, as

well as work conducted at AFIT by Suarez, Goble, et al. (65, 61, 18, 19, 27, 52). An

n x n image of a face is converted into a vector of length n2 , and this high dimensional

vector is then projected into a lower dimensional space via the Karhunen-Lo6ve Transform

(KLT). The coefficients describing this new, reduced vector axe then presented to a back-

propagation neural network for classification.

3.2.1.1 Segmentation. The segmentation portion of the system has been

approached in two fundamental ways. In the first, the faces within the image are manually

segmented, producing a very constant placement of the face within the image. When using

this method, the assumption is that a technique will be made available at some point

3-1



automate this placement, a non-trivial task. The second method addresses this subject,

and involves a frame differencing technique explored by Gay (17). Using the notion that

no one is able to keep his or her face perfectly still, two successive image frames of the

target are captured, and one is subtracted from the other. The resultant motion image is

scanned for head shapes, and if one is found, it will be used as a template to locate the

face within the image. The located face will then be enlarged and moved to a standard

position in the image.

McCrae has explored an additional segmentation methodology in a concurrent thesis

(36). She uses a neural net based color segmentation scheme to detect faces within a color

image by discriminating between 'face' color and 'non-face'color; she is then able to detect

the eyes within the faces using a similar approach. An example of face segmentation and

eye detection using the color discrimination system is provided in Figure 3.1.

Figure 3.1 Eye point detection using McCrae's system (36).

In the course of this research we also briefly examined face segmentation using a

three-dimensional temporal wavelet introduced by Burns in his Doctoral dissertation (6).

Such a wavelet is able to detect motion within a sequence of two-dimensional images by

3-2



analyzing the frequency content over time (the succession of images) and space, rather than

strictly space. Figure 3.2 shows one of the original source images from a sequence showing

a person nodding their head, and Figure 3.3 demonstrates the result of performing one level

of a wavelet decomposition. 3.3a shows the approximation image, and 3.3b, 3.3c, and 3.3d

show , respectively, the horizontal, vertical, and diagonal high frequency components of the

images over time. This technique appears to do a good job of decreasing the importance

of the background, and holds great promise in the motion segmentation arena.

Figure 3.2 Sample of source image before temporal wavelet decomposition.

3-3



a) b)

c) d)

Figure 3.3 Result of one level of temporal wavelet decomposition.

3.2.1.2 Feature Reduction via the Karhunen-Loive Transform. When work-

ing with an n x n image, the holistic recognition approach has led to a traditional feature set

consisting of the intensity value of each of the n2 pixels within the image. A problem with

this approach, however, is that we are left with a feature vector of dimensionality n2, which

may become extremely unwieldy as we attempt to perform some training/classification pro-

cess. Therefore, it behooves us to find an intelligent method to reduce that dimensionality

3-4



without sacrificing the information inherent to the original feature set. Of equal impor-

tance, we would like to find some way to determine which of these reduced features are

most important; that is, which features best differentiate images of different targets1 .

Certain data transformations have been developed that provide us with methods

of identifying which feature, or combination of features, best allow such differentiation.

In classification problems where one does not know the various probability densities of

the classes being studied, methods of orthogonal expansion have proven quite useful in

providing a new feature space in which to project the existing features (63:269). A Fourier

series expansion allows such a projection of periodic processes, but certain conditions must

be met to use them with nonperiodic processes such as our faces2. The Karhunen-Lo~ve

Transform (KLT), on the other hand, allows a non-periodic random process to be expressed

as a series of orthogonal functions with uncorrelated coefficients, and will prove useful in

our classification problem.

While the basis set of the Fourier Transform consists of sines and cosines, the basis

set of the KLT is made up of the eigenvectors of the covariance matrix of the source data.

The derivation is relatively straightforward, and can be stated in words as follows:

1. Compute the mean and covariance functions from the population of training images.

2. Compute the eigenvalues of the statistically normalized covaxiance matrix, where

statistically normalized simply means the mean image has been subtracted from

each individual image in the training population.

3. Calculate the eigenvector corresponding to each eigenvalue computed in the previous

step.

4. To reduce the dimensionality of the original images to some value k, select the k

eigenvectors corresponding to the k largest eigenvalues and matrix multiply each

1We should mention at this point that if we are performing classification using neural networks (to

be discussed in the next section), Ruck, et al, have developed a saliency measure to determine the input
features with the greatest influence on the output (50). Our purpose here is to determine these features
before attempting classification.2If an assumption is made that the non-periodic sequence under study is actually one period of a periodic
sequence, Fourier techniques can be used. Goble showed that under such an assumption, the Discrete Cosine
Transform was indeed effective in providing a recognition capability (18).

3-5



image vector by the eigenvectors. The k eigenvectors form the new KLT basis set,

and any n' dimensional image may now be reduced to k coefficients of the basis set.

Let's now look at the specifics of the KLT process. First define the n2 dimensional image

as a feature vector

where x' is the ith image within the population. The mean vector of the training population

is defined as

M=

and the covariance matrix as

Mcc -F X T _MMT

After subtracting the mean image from all the source images, we are left with a

covariance matrix of the form( i ,i :M ,

==1 Z XZj L.i= 1 Zn2 " " 1  n

This covariance matrix provides us with a measure of the importance of each dimen-

sion within the original set of images. A high variance in a single dimension across all

images indicates a large amount of differentiabi!ity information in that dimension; con-

versely, a small variance in a dimension indicates only a small amount of information.

Our goal, then, is to maximize the values in the diagonal of the covariance matrix (corre-

sponding to single-dimension variance), and minimize the variation in all other locations

(corresponding to co-dimensional variance), thereby orthogonalizing the multi-dimensional

space. This can be accomplished by finding the eigenvectors (and eigenvalues) of the co-

3-6



variance matrix, thus transforming the matrix into an orthogonal space and ensuring an

optimal distance between dimensions (optimality is implied by orthogonality in this case).

We can then rank the eigenvectors in descending eigenvalue order, placing them in

the eigenmatrix ( ell e2l -. ekl

eln2 e2.2a ... ekn2J

This matrix is our new basis set, with k orthogonal dimensions into which any n2

image can be transformed. This transformation is accomplished by the simple process

yi, = (xt - m.)uk, k =1.M

where Yk represents the projection of the original image xi into our new eigenspace. Note

that the selection of k is usually dependent upon the desired reconstruction accuracy.

Krepp found that 32 x 32 face images were sufficiently represented by twenty KLT co-

eflicients for classification to an accuracy of 97.0% (based on 300 images of 10 different

people); this implementation out-performed the system when using all pixel values, where

an accuracy of 93.3% was attained. Therefore, he was able to reduce an n 2 
= 1024 dimen-

sional feature vector into one of only 20 dimensions and still obtain excellent classification

performance. This is the feature extraction approach used for the base face recognizer

building block, but because we are not necessarily looking for optimal face verification

performance (we are instead more interested in the performance resulting from the fusion

of two verification systems) we will use a reduced number of KLT coefficients. That number

will be determined as part of the testing process, to be elaborated on in the next chapter.

3.2.1.3 Neural Net Classification. The use of artificial neural networks

for face recognition is not uncommon in recent research, and networks have indeed been

found to function quite effectively in the face classification task (5, 53, 14, 11, 27, 52). An

excellent treatment of the history, development, and function of artificial neural networks

is provided by Rogers and Kabrisky, and should be referenced for an in-depth examination

3-7



of the subject (45). We shall provide a brief look here at the reasons for using a neural net

for classification, and describe the network developed for the face recognizer used in this

research.

The artificial neural network is meant to emulate, in some sense, the function of the

biological brain. Nodes are developed that model the neurons within the brain, permitting

some functional transformation on the inputs, and weighted interconnections are estab-

lished to provide communication between the nodes, somewhat analogously to the way

in which the biological neural system provides communication between neurons via axons

(neural outputs) and dendrites (neural inputs). Figure 3.4 illustrates the implementation

of a single node of a neural network and shows the multiple-input, single-output nature

of the artificial (and biological) neuron. This particular implementation is also known as

the single layer perceptron, and provides as its output a function of a linear combination

of the weighted inputs, with weights indicated by w, through w., and a threshold bias 0.

Figure 3.5 shows a complete neural network, with an input layer, an output layer, and one

'hidden' layer.

x 
W

Wn

W2

Xn

x
12

1

Figure 3.4 A single artificial neuron (perceptron).

3-8



Outputs

l000

X, X2 Xi

Inputs

Figure 3.5 A fully connected, three layer neural net.

A major advantage of artificially implementing such a system is that the transforma-

tion, or activation, within each node can be selected by the user, allowing one to effectively

implement any mathematical function desired. This ability becomes vital as one attempts

to perform classification of data that is not linearly separable; Cybenko has shown that,

given sufficient nodes in a single hidden layer and non-linear activations within those nodes,

any continuous function can be approximated (12). This implies that, given sufficient re-

sources, any separable data set may be properly classified by such an artificial neural

network.

The basic function of a neural network is conceptually fairly straightforward, and

generally relies on a training process to determine the appropriate setting of the intercon-

nection weights. Once the net has been trained to produce a specific result when presented

3-9



some family, or class, of data, our goal is to be able to present new data to the net, and,

if this new data belongs to one of the classes previously trained on, properly classify the

new pattern based on the net output.

During the training process, pattern vectors are presented one at a time to the input

nodes of the net and allowed to propagate through the interconnection weights, any hidden

nodes (and their associated transformations), and finally through the set of output nodes

(and their transformations). The output values produced for each vector are compared

to a desired set of output values (determinable because we know the classes to which our

training vectors belong) and the net weights are updated based on the difference between

the desired and actual outputs. The update may occur after each vector is presented, or

in a batch manner, after all the training data are presented. This process is repeated until

the error between the actual and desired outputs is reduced to some desired level. At

this point, all the interconnection weights are saved, and when we wish to classify a new

data pattern, we rebuild the net using the saved weights, propagate the unknown pattern

through the net, and examine the output.

A simple example would be illustrative at this point. Consider training a net on

two classes of data using multiple sample vectors from each class. Because we only have

two classes to differentiate, we can establish an output layer consisting of just two nodes.

The input layer will be composed of the same number of nodes as there are features (also

known as dimensions) in the input pattern, and the hidden layer(s) may contain varying

numbers of nodes 3. If the net is presented a pattern from Class 1, we wish to produce an

output value of 1 from output node 1, and 0 from output node 2. When a pattern from

Class 2 is presented we wish to see the converse: a value of 0 from output node 1 and 1

from output node 2. The difference between these desired outputs and the actual outputs

are calculated, and the weights are updated using some learning rule.

Once we have reduced the differences (across all training patterns) to a satisfactory

level, we can present a previously unseen pattern from one of the two classes to the net;

a new pattern belonging to a particular class should produce outputs similar to those

3 Determination of the appropriate number is not always apparent; a discussion of the subject is presented
in Appendix A of (45)

3-10



produced by the training data of the same class. If this is not the case, either the net was

not allowed to train to a sufficiently low error value, or the test vector presented was not

representative of the class of data on which the net was trained.

The face recognition neural network used here is a three-layer (input, output, and

one hidden) network from the class of multi-layer perceptrons as shown in Figure 3.5. The

inputs to the net are the KLT coefficients calculated from the original face images, and

the outputs represent the identities of the persons to be recognized. The learning rule for

weight updates on this particular net is based on the common backward error propagation

(or back-prop) algorithm, with which the output error is used to propagate a correction

to the weights back through the net . The hidden and output layer nodes all use sigmoid

functions as their activations, providing non-linear separation capability as well as an easily

implemented update rule. Given some error measure E as the output of the net, the generic

gradient descent weight update rule is

OEW+ -" W- -- 71 a

and the rule we shall use can be stated simply as

where wjt represents the weight connecting node j to node i in the previous layer, ýj is

an error factor associated with the outputs of node j, Y, is the output of node i, and 1}

is generally a variable learning rate. w+, represents the updated weight value, and w•

represents the weight value before the update. The bs are easily calculated for a net with

k output nodes, j hidden layer nodes, and i input nodes:

Define the error output as

E= 'D - Z,)212)
k

where Dk is the desired output from node k and Z& is the actual output from node k. We

wish to minimize this error function, and thus will use the derivative of the function to

3-11



perform a gradient descent search for the update.

OE = a (DkZk)2
wkj= wk

= (Dt - Zk)- (D9 - ZO)

Notice the derivative is being taken with respect to a specific weight connecting a

particular hidden node j with a particular output node k, so the summation over k reduced

to only a single value. Let's now rewrite the output Z, recalling that the activations for

our hidden and output nodes are sigmoids:

1
1 +e

where Yj is the output of hidden node j. Then we can say

a (Dt_ Zk) = O- 1 )

= ((1+e e1

1 )2 e- E, u.,.jj)Y,

(1 + e1_- E •---j) ( e i Wb

After some slight mathematical manipulation, we can rewrite the derivative as

aa(Dt - Zk) = -Zt(1 - Zk)Y'09wkj

Therefore
aE
W = -(Dk - Zk)Zk(1 - Zt)Yj

3-12



If we now define 6 k = (D. - Zk)Zk(1 - Zk), then we can state the update rule for the

weights between hidden layer and output as

Wh WIj - o9bj

We can derive the update rule for the weights between the input and hidden layers

in a similar manner:

-0D 1 0k2
o,9j, =Dt --zk) 2 =Z(D-Zk) (Dt - Zk)

In this case, the summation over k is retained, as the derivative is being taken with respect

to a weight connecting nodes i and j.

49wji + = le- hY" (49wjix'

= -Z~ Z e "-" ) Xi

Yj= a(

(1 + e-E, i)2

= -Z 1 (1 - Yj) Xi

So
aE

-- _ = -_ (Dk - Z1) (Zk) (1 - Zk) (Wkv) (Yj) (1 -Yj)X,

We can now denote an error factor 6, in terms of the output delta calculated previously,

6k: 6, = Ek 6k (wkj) (Yj) (1 - Yj). This allows us to state our update rule for the weights

3-13



between the input and hidden layer as

W =WPj1ifZ bk(Wk,)(Y;)(1TkYj)Xi
k

Note that we may also have implemented our neural net with linear outputs while

retaining the sigmoidal hidden nodes. For that case, the update rule for the weights

between the input and hidden layers will remain the same, but the rule will change for

updating the weights between the hidden and output layers. The error function will still

be

E 1(Dk - Z7)',
k

but the output Z at each node will now be represented by

z1, = W tkjY

leading to the derivative with respect to wkj

a (Dk-Zk) = (Dk-Zk) a- (D - Zk)

= (Dk - ZO)-a (Dk - wkYj)

= -(Dk - Zk)Y

With the new definition blk = -(Dk - Zk), our update rule for the net with linear outputs

is still
W+ -- 'oYj

ktj = Wki-?7ub

Figures 3.6 and 3.7 iliustrate the function of the complete face recognition system

used as a building block for our identity verification implementation. Figure 3.6 shows the

process of determining the appropriate lower-dimensionality feature space for the given

training population, and Figure 3.7 demonstrates the actual recognition process. The

3-14



faces are first manually centered in the input images4, then an eigen-analysis is performed

on the training population to determine an orthogonal feature space into which to project

the images. The dimensions to be retained become the new basis set, and are known

as eigenfaces, because they represent the eigenvectors of the original training population.

Figure 3.8 shows examples of eigenfaces extracted from a training set consisting of six

people. Using this basis set, coefficients are extracted from each image and presented to

the neural net for training. Each node of the output represents one person to be recognized,

and once the net is trained, presentation of a new instance of one of the faces the system

was trained on should result in the 'firing' of the appropriate node.

4Recall that a collateral thesis by McCrae is solving the automatic segmentation problem (36).

3-15



Input
Images

Eigen-Analysis

4
Eigenfaces

Figure 3.6 Determination of the orthogonal feature space.

3-16



* Training Image

KLT
Coefficients

nEigenfaces

Figure 3.7 The face recognition system used in this research.

3-17



Figure 3.8 Four example eigenfaces produced by a training set consisting of six examples
each of six different people.

3.2.2 Speaker Identifier. The base speaker identifier used for this verification

system was developed at AFIT by Colombi in a 1992 thesis effort, and is based on the

extraction of cepstral coefficients from individual utterances (9)5. These coefficients are

used to build a codebook containing a set of cod ,', ctors (coefficient vectors) representative

of the vocal frequency range of the person to be identified. When that person presents

new utterances to the system for recognition, cepstral coefficients are extracted from the

new speech and a distortion metric is used to measure the distance from the new vectors

and those in the codebook. An overview of the system is provided in the following section.

3.2.2.1 Training the System. Figure 3.9 illustrates the procedure followed

to train the system for a particular individual. Using the audio input capabilities of the

Sun SPARCstation, frames of approximately 30 milliseconds of speech (overlapped by

50%, as illustrated in Figure 3.10) are digitally sampled at 8000 samples/second, and then

6Furui provides an excellent discussion of the theory and application of Cepstral coefficient-based speech
processing in (15).

3-18



processed through a. pre-emphasis network to boost the high-frequency components of the

speech.

1 -0.952

f

Coeffcient

Fiur 39 ranig hespakr detficatio system.iwn

Sp3-19



Amplitude

-0n 40-4mm t

Frame 1

Frame 2

Frame 3

Frame 4

Figure 3.10 Illustration of the overlap of speech frames (each frame ,,30 milliseconds
long).

Twenty Cepstral coefficients are extracted from each of the resultant frames by the

Entropic Signal Processing System (ESPS() software package, and then ESPS is used to

determine a probability of voicing factor for each of these frames. A probability of voicing

at or above some threshold indicates the presence of formants, which provide a better

correlation with an individual's vocal tract than do fricatives, and using such a threshold

will allow us to discard the frames containing only fricatives or silence. All of the frames

that are retained are then presented to a Linde-Buzo-Gray clustering algorithm, which

is used to transform the initial coefficient vectors into a set of 64 new cluster centers, or

codewords, which are placed in a codebook representing the individual (30).

3.2.2.2 Speaker Recognition. The first stages of the recognition process are

identical to those of the training process. The individual to be recognized will provide

an utterance to the system, and the speech will be put into frames, digitized, Cepstral

processed, and the frames with a sufficient probability of voicing will be retained. Each

of these new vectors will be presented to each of the codebooks representing the training

3-20



population, and distortion measures will be made of the distances from the new speech to

each of the codebooks. The distortion measure from each codebook is calculated by

N M

distortion = E E mincm' [d(Xj, Vi)]
j=1 i=1

where N is the number of new speech vectors, M is the number of codewords in the

codebook, and miniEM [d(Xj, V')] is the minimum of the Euclidean distances between the

new vectors Xj and the codebook vectors YI. The new speaker is then recognized as the

individual whose codebook corresponds to the lowest distortion. Xu showed that pseudo

post-probabilities could be calculated from the results of the distortion measurement pro-

cess through the simple metric

1

Pk~j) distortionk(i)pk(i) = Jstfte&s
distortionk(i)

where i is the class under consideration, k is the classifier (in this case, one of the code-

books), and M is the total number of classes (66).

3.3 Conversion From Identification to Verification

Verification is generally an easier problem to solve than identification, but we must

recognize that the two processes are distinct, and can be approached differently.

For identification, we generally begin with a database containing the identities of

known individuals and information that can be used to classify new instances of these

individuals; the identity of a new instance will be selected from the database based on

some set of characteristics and some selection rule. The assumption made is that the

person to be identified is present in the database already, or put another way, that the

database contains the entire population of possible targets. To overcome this limitation, it

is possible to set an acceptance threshold so that an identification will be made only if some

minimum error criteria is met; it would be perfectly valid to perform a statistical analysis

of the performance of the system for each individual in the database to determine such a

3-21



threshold 6. This can become quite cumbersome, however, as the number of individuals

and the amount of information in the database increases.

In the verification problem, the assumption is again inherent that the database con-

tains information about every possible target, but we now have a different classification

criteria: we may either decide that the target is who he claims to be, or is not, and need

not concern ourselves with who he actually is. As with identification, we could again

statistically determine thresholds to establish confidence in the performance of our veri-

fication system, but that would still be a computationally intensive and time consuming

task. We would prefer to find a way to actually represent the possible target population

as a whole, and to train our system to determine what makes a new instance of a known

target different from another member of that target population.

The approach made in this research is to attempt to do just that: model the aver-

age population and train our verification system to recognize what makes an individual

stand out from that model. We will use the same back-prop neural net as was used for

face recognition for this effort, but instead of training it to differentiate one individual

from another, we will train it to differentiate each individual from the entire set of other

individuals; one could say that we are treating all the non-target individuals as different

instances of a single person. The hope is that, given enough individuals in the data base,

we will be able to successfully model the 'average world' person, and thus discriminate the

target from this person.

3.3.1 Face Verifier. To provide a face verification capability, we will break down

our population of training images into two classes: the person to be verified and everyone

else. If we begin with a training set consisting of k prototypes each of N individuals, then

one training class will consist of k images, and the other of (N - 1)k images. As with the

basis system, the training population will be used to form an orthogonal space, and KLT

coefficients for each image will be extracted. These coefficients will be presented to the

eWe may envision the analysis as requiring 'many' new instances of each individual to be presented to
the system, and recording the number of correct and false recognitions. A threshold could be established
to minimize the error for each individual based on this analysis.

3-22



neural net, along with a tag identifying each set as either belonging to the target individual

or not, and the net will be trained to provide proper classification.

After the net is trained for a specific individual, the weights calculated will be stored

in a file specific to him, and will be used to rebuild the net whenever an individual presents

himself to the system claiming to be that person. Ruck, et al, has shown that the outputs of

a multi-layer perceptron configured as ours will approximate the a posteriori probabilities

of being in a specified class (50). For the recognition problem, where equal numbers of

protoypes for each class are presented for training, the probability of being in a certain

class is simply

prob. Z.ELzi

where Z,. is the output of a specific node in the output layer, and K is the number of nodes

in that layer. A source of bias exists in the verification case in that there will be many

more instances of 'not-Joe' than there will be of 'Joe' presented to the net for training (in

fact there will be N - 1 times more instances). This bias must be accounted for at the

net output if we wish to classify in terms of post-probabilities, which will be quite useful

when attempting to fuse our two basis verification systems. Hush and Horne have shown

a simple technique for compensating for such a bias.

If the training set distribution does not accurately reflect the actual a priori
probabilities, the network outputs can be scaled to compensate... The proper
adjustment can be made by scaling the estimate of P(wIlz) by P(w,)/P,(Wo),
where P(wi) is the true a priori probability, and Pt(w1 ) is the a priori probability
implied by the training set distribution (24).

In our case, we will scale the probability of a correct verification calculated at the output

of the neural net by

0.5 0.5 * number of non target vectors
(number of target vectors)/(number of non target vectors) number of target vectors

3.3.2 Speaker Verifier. The original speaker identifier classifies by selecting the

codebook resulting in the lowest distortion measure between that codebook and a set of

test vectors. Because we wish to project the classification information into a probabilistic

space, we will again use a neural net classifier. We will retain the earlier stages of the

3-23



system, extracting Cepstral coefficients and developing a codebook for each person, but

will then present the vectors within the codebook to a neural net, tagging the vectors in the

target codebook as belonging to one class, and all other codebooks' vectors as belonging

to another. Similarly to what we did with the face verifier, we wish to, in effect, build a

composite 'not-Joe' to train against the person to be verified. '

The vectors within all the training codebooks will again be used to form an orthog-

onal space into which to project each of the targets, and the net will be trained on the

extracted KLT coefficients exactly as with the face verifier. When new instances of a per-

son are presented, the speech will be converted into a new test codebook, and verifying the

speaker's identity will be accomplished in the same manner as verifying faces, including

the compensation for training bias produced by training on more 'non-Joe' vectors than

'Joe' vectors.

3.4 Fusion of Face and Speaker Verifiers

Though many options exist for fusing multiple sensor outputs, for this implementa-

tion we will only look at simple linear combinations of the post probabilities output from

our two neural nets. In other words, we will attempt to minimize the classification error

by choosing the appropriate combination of posteriori probabilities.

3.5 Potential Improvements to the Face Verifier

The existing face identification system relies on the KLT process to reduce the di-

mensionality of the feature set and to project the images into an orthogonal feature space.

The number of features are further reduced by selecting the desired number of eigenvec-

tors corresponding to the highest eigenvalues of the training set covariance matrix. With

faces, previous work demonstrated that the top five or six eigen-coefficients were adequate

for providing good classification performance under fairly controlled conditions, but no

attempt was made to determine if we were actually selecting the dimensions with the most

7Note that we could train our net using the Cepstral vectors prior to clustering into codebooks, but the
clustering process was designed to capture the essence of the speaker; any small loss of information is felt
to be more than offset by the elimination of the overhead of processing hundreds of 'raw' vectors (versus
fi for the codebook) for each individual.

3-24



classification information. Recall that the KLT process chooses as the optimal dimensions

those that have the maximum variance across the entire training population. Though the

higher variance does imply a higher amount of information, the information is not neces-

sarily most suitable for differentiation between classes. Instead, this type of information

is more suited to reconstruction of some initial pattern using a reduced number of fea-

tures; reconstructing with a given number of eigen-coefficients (in descending order from

the maximum eigenvalue) guarantees that there is no other combination of coefficients that

will result in a lower mean-squared reconstruction error (63:275).

For the classification problem, we wish to determine if there is a method of dimension

selection that is more appropriate to the multi-class problem. Forming an orthogonal space

based on the training population is still appropriate, so that process will be retained, as

will the projection of the training patterns into that space. As an alternative to the KLT

selection method, we would like to select the dimensions that correspond to the lowest

amount of in-class variance, as well as the highest amount of out-of-class variance. This

metric should result in retaining the dimensions that have the most information about

the difference between different classes. Such a metric is the F ratio, which is defined as

variance of the means (over all clames) 9: . Gi
mean of the variances (within clase") ( yen n instances of m different classes results in

the F ratio
F EmTI (1j4) 2F = -M1-

m(n-1) _ ,,X j)

where pi is the mean of all measurements across all classes, lij is the mean of all mea-

surements for Class j, and xj is the ith measurement of Class j. We will implement this

figure of merit in both of the verification systems we develop and test the performance of

the systems using dimensions selected via this metric versus those selected by eigenvalue

order.

Recognizing that we are not restricted to selecting the 'important' features by linear

means only (both eigenvalue ordering and the F ratio provide linear selection criteria),

we can also attempt to non-linearly transform our set of orthogonal dimensions into a

new, reduced space. Using a sigmoidal back-prop net similar to the one we are using

3-25



for verification, we will explore the possibility of increasing classification performance by

training the net to maximize the distance between the classes.

In order to use a neural net for such a dimensional transformation, we must derive

a rule for updating the weights. Many update methodologies exist, but we will develop

one that will transform the initial multi-class data (two-class in the verification case) into

a more easily separable, and thus more easily classifiable, space. The rule shall be based

on maximizing the separation between elements of the different classes, and the error from

which it is derived can be stated as

where Z, is the output from output node k when the net is presented a vector from Class

1, and E is a measure of the total distance between the net outputs when presented with

vectors first from Class 1, then from Class 2. Maximizing this function should maximize

the distance between the members of different classes. We can use gradient ascent to

accomplish our goals because we are maximizing. To derive our update rule, we shall

begin by finding the partial derivatives of the output 'error' with respect to the various

weights. For the weights connecting node j in the hidden layer to node k in the output

layer

O9E _ 9 1 1 22

- ",k E-Z (Zk

= -(Z -Z)

--- (Z 2 - 24)[(1- - 4(I- Z)y12]

Then the update rule can be stated:

-+ -ll 62Y,2)
kj - kj+ 77,,t

where 6- k ( ZZ - ),I = 1,2

3-26



The update rule for the weights connecting the ith input node to the jth hidden

node can be found in a similar manner:

OE = _[(Z- Z2) (

= [(ZkI _ Z2)(wj][Z)1-Z)Y'( •)•-(•( •(•)I-Y)•

S k "i~w?, w + e- I +e ,

E [ (Zkl - Zjý) (-Zý)l- ZkI) '-(-Wkjyj') + (Z,2)(l -k2 ' -ky2)

k

This then leads to the weight update rule

wj+ = wi, +II

where b = (ZkI _ Zk)(Wkj)(ZI)(1 - Zk)(Yj,')(1 - 1j')

Note that the derivation performed above assumes only two classes are being exam-

ined; in the case of our verification problems, this would be an appropriate solution. The

error term can easily be generalized to m classes:

1 = j3(Z,,' _-kO)
k MYM

where the summations over m and fnz will account for all the distances between the outputs

of each member of one class and each member of every other class. The weight update

rules can be derived in a manner similar to that shown above for two classes.

This chapter has provided an overview of the methodology to be used in the performance

of this research. The details of the actual implementation and the software generated and

modified are presented in Appendix A. The next chapter provides the results from the ex-

perimentation accomplished in the course of this research. Performance of the individual

3-27



verifiers under different conditions will be detailed, as will the performance of the overall

identity verification system.

3-28



IV. Results

4.1 Introduction

This chapter contains the results obtained during this thesis research. Because a

major thrust of this work has been to determine if the dimensional reduction achieved

through the traditional KLT methodology is well suited to face recognition/verification,

we shall first examine the results of applying the Figure of Merit (FoM) described in

Chapter 3 to a contrived 'toy' problem. In this way, we will determine the effectiveness of

the metric on a problem with a known data distribution, and if it is shown to be effective

we will extend its use to actual face and speaker data.

We will then examine the face verification problem, focusing again on the dimension-

ality reduction task, comparing clustering and accuracy obtained by selecting dimensions

based on FoM, eigenvalue, and the dimensions resulting in the lowest training error for a

set number of training epochs. We will perform the same comparison using speaker data,

and will use the results from the face and speaker methodology comparisons to implement

the two components of the identity verification system using the technique best suited to

each.

Next, we will examine the performance of the nonlinear dimensional transformation

method on toy and actual data. In this examination, we will attempt to determine the

viability of such a metric.

We will finally look at the verification accuracy resulting from the fusion of the face

and speaker verification systems. We will first determine the optimal linear combination

of individual verifier cutputs that will provide the highest training accuracy, and will then

use that combination to test the system against new data.

4.2 The Figure of Merit

Recall that the Figure of Merit (FoM) was developed through a straightforward

process:

4-1



"* Calculate the orthogonal eigenspace associated with the entire population of training

samples by determineing the eigenvectors of the covariance matrix of the sample

population.

"* Project each individual class into the new eigenspace using simple matrix multipli-

cation.

"* Determine the means and variances of each individual class within the orthogonal

space, as well as the variance of the class means and the mean of the class variances.

"* Calculate the figure of merit using the following formula:

FoM = variance of interclass means
mean of intraclass variances

This FoM represents a measure of how separable the individual classes are within the

orthogonal space in relation to how tightly clustered the elements of each class axe. A

higher value will indicate better separability.

To test this FoM, we developed a toy problem using a two-class, three-dimensional

environment. Using MatLab ®, 50 sample points were used to generate a uniform distri-

bution with dimensions on the x - y - z axis of 5 units by 1 unit by 1 unit. A copy of this

distribution was then made, and was shifted along the y and z axes so that the two classes

were parallel along the z axis (Figure 4.1).

4-2



Two Cm Dkutnn

. .. .. ... .............
..............

, ..........
.' ...........

0. . ... .... . .
S..." m .. ! r....".: ....... ..................... .... .........

-.. ..........
N OA: .. I.. " .•.: ...... I ' $ " ..........

....-." ... . .... .. "'j ': .......- ......... .i.... .........

Fiur 4.:1 To probem.i.t.buion

P4 0.2 -- ' ... "" .....:...... ,• . .. : ÷ -! ...... ......S.... •." : . -'" : • + .... ....... .. . ""-.2.4 .- " ....... +:... ! •+. -. ... L, • • ",• •:"......
-O . . .. : ..... .'" : ÷ "i........ . ... .... ....

S..............

y x

Figure 4.1 Toy problem distribution.

This type of class distribution will provide a basis for a comparison between the

traditional KLT method and the FoM approach. Using the KLT, the importance of each

eigenvector calculated will be directly proportional to the variance of each dimension among

the entire sample population; the dimension with the highest variance, in this case along

the z axis, will be the most important. However, we can easily see there is no information

in the x-dimension that allows us to discriminate between the two classes, so using the

KLT and one eigen-coefficient should result in poor discriminator performance. Using the

FoM approach, however, more importance is placed on those dimensions having a higher

class mean separation in relation to the class variances. In this case, obviously either the

y- or z-dimensions offer more information than the x-dimension for class discriminability.

The training data were processed through the two different algorithms, and a back-

prop neural net was trained for each with one eigen-coefficient, using half the data points

from each distribution for training. The classification results using a single coefficient from

the remaining data points are shown in Table 4.1. Note that, as expected, the KLT method

does not allow discrimination between the classes using only one coefficient, while the FoM

method does indeed allow us to classify the test data with a high probability (recall that

the outputs of the neural net can be directly related to pseudo post-probabilities).

4-3



Table 4.1 Classification accurac of KLT vs FoM.
KL T FoM

Mean Probability of
Correct Classification
(one coefficient) 0.22 0.72

4.3 Face Verification Dimensionality Reduction

In this section we shall examine the characteristics and importance of the different

dimensions resulting from the orthogonalization process on face data.

4.3.1 Clustering in Two Dimensions. To get a feeling for how our data will

cluster using the different dimensionality reductions schemes, we will examine six classes

of faces composed of five prototypes each. We will project these faces into an orthogonal

eigenspace, but will only retain two of the thirty possible dimensions and plot all the

extracted data eigen-coefficients onto a single plot. Retaining the two bases corresponding

to the dimensions producing the lowest training error resulted in the cluster plots of Figures

4.2 (clustering of the same data on which the net was trained) and 4.3 (clustering of test

data not previously presented to the net) 1. Similar plots are presented in Figures 4.4 and

4.5 for coefficients selected based on eigenvalue order, and Figures 4.6 and 4.7 for those

based on our figure of merit. Figure 4.8 provides an example of an original face in the

training set and the reconstruction of that face using two eigen-dimensions selected by

each of our three different schemes.

1The minimum error dimensions were found by training the net on one dimension at a time until one
was found producing the lowest error, repeating this process while retaining the first dimension, and so on.

4-4



causmog Bmrd on MWintn Emw Otmrd OmnmWom (Trlmi DSaal..07, • . ,* •,

86#06 Om4M I

ci°46.06

2•.06

4Wo.6 Clo 2 ED

-16.07
-.5,06 -406 .3,.06 +06 -16W--I 1.06 2.06 3woN 40 5o+06

OkrwMn I

Figure 4.2 Clustering of six training classes (faces) using the eigen-dimensions producing
the minimum training error.

Ckasg Bad on Mum EMr Orate Dknermlo (Tem Da"j
1",7 . . ..

16.01w

-lo407i III ý Iminimum training error.

cum4-00~

4W.06 Ons

MWM
Figure-2.0 4.Clseinlfsxtetcassmfcs sigteiendmsosprucgth

4-



cMaw" Bond a Eowa OQdKQ Oknmmbm (Td' DE)

06

0 am2 0~~Clm)S6m)~Mv

~006

IC~~ _____

-10+07 -m.0 40.06 4-.06 -2.+00 0 2o. 406 low06 8g40 1.
ODaen 1

Figure 4.4 Clustering of six training classes (faces) using the eigen-dimensions corre-
sponding to the two highest eigenvalues.

C8tinm8ig Bmf an Ejgmws Odd Ow 6 rm (Tea Dam)

40+06 ob=
0 o 0 ..

0

Qm0

-40+08 ___6

-1.+07 4*#06 -. 06 -4"-06 -2.0.6 0 20.06 4W.06 60.06 8.,06 l.47
DklmflUon 1

Figure 4.5 Clustering of six test classes (faces) using the eigen-dimensions corresponding
to the two highest eigenvalues.

4-6



CainubVgBaud an d mw OM". Cidu imm (Tmw% ODm)

ab 4 *UinVi

o< I
Cw"S

f~imcow ims

-30I I I -I . 1

-150 0002 - 1 0 40 000 100000 I0 4 00006
Oftmeml I

Figure 4.6 Clustering of six training classes (fac es) using the eigen-dimensions corre-
sponding to the two highest Figures of Merit.

47 Cue 6

-14000001200-000I I • I O2004• 00 00

Wwrmobn I

Figure 4.7 Clustering of six test classes (faces) using the eigen-dimensions corresponding
to the two highest Figures of Merit.

4-7



a) b)

c) d)

Figure 4.8 Original training image (a) reconstructed using two dimensions selected by
minimum error (b), eigenvalue (c), and figure of merit (d).

4-8



Table 4.2 Face Acceptance/Rejection Accuracy

Type Num Dimensions Min-error Eigenvalue FoM
True Accept 2 100.0 100.0 80.0
True Reject 2 76.0 77.3 43.3

Overall 2 80.0 81.1 49.4

True Accept 4 100.0 100.0 83.3
True Reject 4 91.3 85.3 49.3

Overall 4 92.8 87.8 55.0

True Accept 6 100.0 100.0 76.7
True Reject 6 94.0 96.0 61.3

Overall 6 95.0 96.7 63.9

True Accept 8 100.0 100.0 93.3
True Reject 8 96.7 96.0 60.7

Overall 8 97.3 96.7 66.1

Note that for the first two selection methodologies, the six classes form quite distinct

clusters for both training and testing data, implying that classification should be fairly

easy. The FoM plots, however, show no such obvious separability. The distribution of the

data apparently does not lend itself to separability using such a process. The implication

is that selecting dimensions based on the FoM may not provide the performance desired,

but because we are only looking at two dimensions out of the possible 30, the real test will

be to compare classification accuracies for larger numbers of dimensions.

Remembering that one of our basic goals is to significantly reduce the number of di-

mensions needed to accurately represent members of each class, we will examine the results

of training and testing the net with two, four, six, and eight eigen-dimensions, selecting

the dimensions based on minimum training error (min-error), maximum eigenvalue, and

FoM. The training and test sets will again consist of six classes, with five instances of each

class in each set. Table 4.2 gives the results of these tests; the source data for these tables

can be found in Appendix A. Two tables are provided here for each scheme, one giving the

accuracies in accepting/rejecting actual instances of the claimed identity (True Accept)

and rejecting/accepting false instances of the claimed identity (True Reject of imposters)

and one giving overall verification accuracy. Figure 4.9 provides a visual summary of the

overall accuracy of the face verifier using the different dimension reduction schemes. Note

4-9



100 a ,

by minimum error order, eigenvalue order, and figure of merit order.

that in each of the tests the FoM dimension selection scheme provided a substantially lower

verification accuracy than the minimum error or eigenvalue methods. This appears to sup-

port the impression of poor separability provided by the clustering plots of Figures 4.6 and

4.7. Figure 4.9 indicates that when using six or eight dimensions, we will attain virtually

the same verification accuracy using dimensions selected by eigenvalue as we would if we

selected them based on rminmum error. Because the KLT process naturally produces di-.

mensions ordered by eigenvalue, we will retain this method for selecting our dimensions for

face verification. Because six dimensions provide an adequate level of accuracy (96.0 %),

we will use that number for testing on the face verifier portion of the identity verification

system.

4-10



4.4 Speaker Verification Dimensionality Reduction

In this section we shall perform a similar examination of speaker data dimensional-

ity as we did with face data, including analysing the clustering performance of the data

with dimensions selected through our three different criteria. We shall also examine the

verification performance of the speaker verifier using these different dimension selection

schemes.

4.4.1 Clustering with Two Dimensions. Because our speaker verifier is based on

training and testing on 64 code-vector long codebooks, the clustering plots will necessarily

contain many more data points than the face data plots did; with the six classes we will

use, there will be a total of 384 points on the plot. We would still hope, however, to

see some distinct clustering of these points by class, and Figures 4.10 through 4.15 show

that clustering behavior of some of the classes is evident, but there is substantial overlap

between the classes.

4-11



M" BImd an WkrAmn Enr OrWed ODimvraos (TnIq Da)

x N ,,e

15 X X $, X V

10 a A 4P a

-IS X- 4m, d, &a. "iý,

5 X X A 'L

.5

-10

-15

-20

4.6 4.6 44 -0.2 0 0.2 4 0.6 0.8 1
Ohr~ I

Figure 4.10 Clustering of six training classes (speakers) using the eigen-dimensions pro-
ducing the minimum training error.

MomasA 'aeon MMma Emo Ord&d Dbmwm (Too Dwa)

20 KXf X Y
XXKK

15 1 XX
x

10 A'LA-- & X X• "X 'L

-5

-0.8 4.o6 -0.4 40.2 0 0l.2 0l.4 0l6 01.8
Olemo 1

Figure 4.11 Clustering of six test classes (speakers) using the eigen-dimensions producing
the minimum training error.

4-12



C.,wmnwo BSmd an E*orwa. OrdmW Obimaoiw (Trrft 0aw)

K K

25 X XAX A. A K
X A X

20 X A A .
t -a A X

15 ex WX

-10

10

.15 4 4 4

-20

-3 .5 2 -1.5 "1 -05 0 0.5 1 1.5 2
POrm I

Figure 4.12 Clustering of six training classes (speakers) using the eigen-dimensions cor-
responding to the two highest eigenvalues.

Chow".V~ Bmdoan Eoguwakm Odmbad Dbwnioea (Tomn D"a
30 I

N X;X X X -

20 x

20 K
4X0*

NOW

-10 A* 4

A30

-40 +

-10 L -A4

-3 -2.5 .2 -1. -1 _0.5 0 0.5 1 1.5 2 2.,5

Figure 4.13 Clustering of six test classes (speakers) using the eigen-dimensions corre-
sponding to the two highest eigenvalues.

4-13



Ckimnwg led on FOM Oiuonb DhMranns (Truanmg DgaW

30 A& &AA&A

25 AA

A AA X IA X

-20 is a '

X !N A X

a 'Are ne Ln•X

a

40 4 •

10
a al Aa

P X * M X A,

-5 +

-10 +

.15

-20 _j
.1 -0.5 0 0.5 1 1.5

Dlmnerm- I

Figure 4.14 Clustering of six training classes (speakers) using the eigen-dimensions cor-
responding to the two highest Figures of Merit.

sltMoving Baoed on Fan Ordpred DkTrsioms (Tom vera

40

CX 
A

-10 *t* *X4

-0 so4

.10 4
4+

-40 +

-501 +

-60+
-1-0.5 0 0.5 1 1.5

Dknorabio 1

Figute 4.15 Clustering of six test classes (speakers) using the eigen-dimensions corre-
sponding to the two highest Figures of Merit.

There does not appear to be a significant difference between any of the dimension

selection methods, so we next performed an analysis of verification performance using

4-14



Table 4.3 Speaker Acceptance/Rejection Accuracy

Type Num Dimensions Min-error Eigenvalue FoM
True Accept 4 38.9 52.8 58.3
True Reject 4 58.0 58.3 60.1

Overall 2 55.9 57.7 59.9
True Accept 6 77.8 38.9 61.1
True Reject 6 61.5 54.9 58.0

Overall 4 63.3 53.1 58.3

True Accept 8 77.8 58.3 66.7
True Reject 8 59.0 62.9 52.1

Overall 6 61.1 62.4 53.7
True Accept 10 88.9 47.2 72.2
True Reject 10 69.8 62.2 53.11

Overall 8 71.9 60.5 55.2

four, six, eight, and ten dimensions selected by the three different schemes, minimum

error, eigenvalue, and FoM based. Table 4.3 provides the results of these tests, in a format

identical to that used when presenting the face verification results. As with the face verifier

testing, source data for these tables axe provided in Appendix A. With speaker data, as with

the face data, using eigenvalue based dimension selection provides superior performance

over using the figure of merit, so for the speaker verifier portion of our identity verifier

this method shall be used. Because we wish to reduce the dimensionality of the problem,

we will select the top ten dimensions. Figure 4.16 provides a visual representation of the

verification accuracy for the different number of dimensions.

4-15



75

70

o Minimm Eror Orwgd DonWnw e.4-
EIgonvakjo Ordmd Dmn.-nh. -0-

FoM Onbedr 1,mnm -

45

4 6 8 10
Numftr o Dimensios Ued

Figure 4.16 Speaker verification accuracy using four, six, eight, and ten dimensions se-
lected by minimum error order, eigenvalue order, and figure of merit order.

4-16



4.5 Nonlinear Feature Transformation

For this test, we used the backprop neural net and weight update rule as described

in Chapter 3. The system was first tested against a set of linearly separable, two-class toy

data, as shown in Figure 4.17. Rather than attempting to reduce the dimensionality of the

test space (from two to one in this case), we first examined the case of simply transforming

the original input dimensions into the same number of output dimensions. This could

provide some idea of if and how the data would cluster in a transformed space; similar

cluster plots were shown earlier in the chapter for face and speaker data. Figure 4.18

shows the result of transforming the original data through the net after 1000 iterations (50

epochs).

4-17



T•O IMm Toy DOW

I0

9 4

8 4

74

6 + 4

5 +

4 1 .

3 4 5 6 7 8 9 10

Figure 4.17 Toy data set used for testing against the nonlinear transformation net.

Trr~xwat an To O

0.9

Ob

0.7

0.6

O05

0.4

03

02 wa.u

0.1

0 S0 0.1 0.9P. 03 0.4 05 016 0.7 08 0.9

Figure 4.18 Transformed toy data.

4-18



Note that the data clustered quite well, leading us to believe that this methodology

holds promise; the net was able to transform the data points into a more easily classifi-

able space. Actual face data was next projected into an eigenspace, 30 coefficients were

extracted from each of two classes of faces consisting of five protoypes apiece. Figures 4.19

through 4.23 show the movement of the data points as the number of training iterations

increases.

0.75 -

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.25
0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Figure 4.19 Transformed face data (100 iterations).

4-19



0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2 .1.dm.1.200 .
"lhol.dx.2.200W

0.1

04

0 0.1 0.2 0.3 0.4 0.5 0.0 0.7 0.8 0.9

Figure 4.20 Transformed face data (200 iterations).

0.9

0.8 4

0.7

0.6

0.5

0.4 -4

0.3

0.2 "ae~m140
"lacsl.du.2.400"

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.21 Transformed face data (400 iterations).

4-20



0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2 "m1 .1.5O *
"1ýc1.d&2.500"

0.1

0
6 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9

Figure 4.22 Transformed face data (500 iterations).

0.0

0.8

0.7

0.6

0.5

0.4

0.3

0.2 "ae~l170
%wl.dK.2.700 '

0.1

0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9

Figure 4.23 Transformed face data (700 iterations).

4-21



There is a definite movement of cluster centers toward the far corners of the reduced,

two-dimensional space, showing that, as with the toy data, distance maximization is taking

place. Note, however, that each of the clusters has four members of one class and one

member of the other class in it, or an 80% clustering accuracy. The net appears to be

finding a solution to the transformation problem that may not be optimal; it may be

getting caught in a local minima. Recall that the neural net is not guaranteed to find the

best solution (for that matter, it is not guaranteed to find any solution), but may find some

local solution that is 'almost' correct, as was the case here. Nevertheless, the technique still

appears to have done a good job of reducing 30-dimensional data to only two dimensions

while still providing fair separability. Using the same data set, we also trained the net

for 1,000,000 iterations (100,000 epochs), and found that one of the abberrant points had

been pushed back across to its own class cluster, leaving one duster with members of one

class, and the other with all the members of one class and one member from the other, a

clustering accuracy of 90%. This seems to show that given enough time and/or different

initial parameterization the net may indeed be able to better separate the data in reduced

dimensions.

We next looked at a five class problem, using five different classes of face eigen-

coefficients, again with five prototypes of each class, and transformed the data points into

a two-dimensional space. Figure 4.24 shows the result of 5,000 iterations (200 epochs) of

the data through the net. The hope of distinct clustering does not materialize for this data

set, though some clustering has occurred. There is a great deal of class overlap, though,

so classification would likely not be an easy task.

Further training on this set collapsed the data to only two cluster points a very

small distance apart, making the transformed space virtually unclassifiable. With further

'tweaking', the performance of the transformation net on multi-class (greater than two)

problems could very likely be improved, but for the purposes of this research such tweaking

was not attempted. In the next chapter, we make recommendations for areas of future

research on and testing of this nonlinear dimensional reduction scheme.

4-22



Fke QM PaM 0a
* *AO £ A

0.9 A

x

0.8

0.7

0.6

0.5

0.4

0.3

0.2 gmn l.1.nu:

0.1 g" 12M4.gnu' X

o0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1

Figure 4.24 Transformed Five Class Problem.

4.6 Fusion of the Face and Speaker Verifiers

One traditional scheme for sensor fusion has been to fuse the post-probabilities from

the outputs of the individual sensors, and we first examined this method for our fused

face/speaker verification system. Using the four common classes between the face and

speaker data described earlier in this chapter, testing was performed to find the linear

combination of net output face/speaker probabilities that provided the highest verification

probability. As can be easily seen by the individual class accuracies provided in the tables

in Appendix B, the accuracy of the face verifier appears to overpower that of the speaker

verifier. Recall, though, that the verification scheme has been based on a simple 0.5

threshold; that is, if the probability calculated from the output of the net is greater than

0.5, the verifier is said to have accepted the individual as who he claims to be. Conversely,

a post-probability of less than 0.5 will indicate non-acceptance of the individual. We found

that the levels of probability out of the face verifier were so high (for acceptance) and so low

(for rejection) that the face probability still greatly overpowered the speaker probability,

the levels of which did not stray to the extremes nearly as often or as significantly. Based

4-23



strictly on the probability levels, we would select 100% face verification and 0% speaker

verification for the 'fused' verifier 2

What is more important than simply the levels of the probability output, however, is

the accuracy of verification. For thiF system, a verification probability of 0.9 provides the

same correct (or incorrect) answer as a probability of 0.6. Therefore, the decision was made

to track the verification accuracy of the system as a function of the linear combinations of

the outputs of the two verifiers. Table 4.4 gives the result of this test, showing that the

highest fused verification accuracy was achieved when using 40% face and 60% speaker

probabilities (recall that True Accept shows the accuracy in accepting actual instances

of the individual, and True Reject shows accuracy in rejecting imposters). This may be

somewhat counter-intuitive, but is due to both the smaller variation in the levels of speaker

verifier output probability and the different type of information examined by the individual

verifiers; a poor performance by one verifier can be compensated for by good performance

by the other.

Table 4.4 Accuracy of fused test classes.

Acceptance/rejection accuracy
% Face % Speaker True Accept True Reject Overall
10 90 69 72.9 72
20 80 94 77.1 81
30 70 100 87.5 91
40 60 100 89.6 92
50 50 100 81.3 86
60 40 100 83.3 88
70 30 100 79.2 84
80 20 100 79.2 84
90 10 100 81.3 86

2This may not be strictly true. We would actually perform a statistical analysis of the data, and

determine if the speaker probabilities could narrow some confidence interval within which we could expect
some restrictive percentage of correct verification answers to lie.

4-24



To test the fused identity verification system, we selected nine individuals from whom

to collect both face and speaker data. Recall that for the fused system it was determined

that six-dimensional face data and ten-dimensional speaker data (both sets of dimensions

selected by descending eigenvalue order), and a fusion ratio of 40 % face and 60 % speaker

would be used. Table 4.5 shows the accuracy of each separate verifier taken alone and the

overall fused accuracy. The most important thing to notice about this table is that the

performance of the fused identity verifier is indeed improved over that of either of the two

components.

Table 4.5 Fused Identity Verification Accuracy.

IFace Verifier Speaker Verifier IIdentity Verifier 16
55% 61% 1 66%

It should also be mentioned that the levels of face verification accuracy found during

this test appears to be substantially lower than was found during the tests earlier in this

chapter. This is due to the increased number of classes used during this portion of the

testing; we used a total of 50 % more prototypes for this test (nine, vice six for the earlier

tests). Additionally, an effort was made to purposely select individuals without radically

different appearances, creating a somewhat more difficult classification problem. The goal

was to see if sub-optimal performance of the face verifier could be overcome by input from

the speaker verifier, and the results appear to indicate this is the case.

To provide a 'sanity check' that the ratio of face to speaker probabilities selected was

appropriate, we also ran a test on the nine classes of test data, with the results shown in

Table 4.6. Notice that if the decision had been based on this data, we would have selected

the 50 %/50 % mix, but the 40 %/60 % chosen also performed quite well.

4-25



Table 4.6 Accuracy of fused test classes.

Acceptance/rejection accuracy

% Face % Speaker True Accept True Reject Overall
10 90 53 63 62
20 80 67 62 63
30 70 72 63 64
40 60 83 64 66
50 50 97 64 68
60 40 100 61 65
70 30 100 59 64
80 20 100 54 59
90 10 100 52 57

In the next chapter we will summarize the conclusions resulting from the testing

described in this chapter. We shall also present a summary of areas recommended for

future research.

4-26



V. Conclusion

5.1 Introduction

This chapter will provide a short summary of the purpose and results of this research

effort, and will suggest areas suitable for future research. Recall that our overall goals were

threefold:

"* To convert existing face recognition and speaker identification systems to face and

speaker verification systems.

"* To determine whether the method of dimensionality reduction currently used for the

face recognition system was suitable for the task.

"* To fuse the face and speaker verifiers in the hope of providing enhanced performance

over either of the individual verifiers alone.

These items will be addressed in the following sections.

5.2 Conversion From Recognition to Verification

5.2.1 Face Verifier. The existing neural-net based face recognition system was

converted into a verifier by altering the training methodology. Instead of training the net

to recognize all the individuals in the training data base, a separate net was trained for each

person. The feature set used consisted of the KLT coefficients extracted from the original

64 x 64 pixel images. This net was trained to recognize two classes: the person for whom

the net was trained and everyone else (Joe and not-Joe). Training was accomplished by

presenting prototypes of the individual as instances of one class, and all other prototypes

in the training database as instances of the other class. With such a scheme we hoped to

train the net to 'learn' what makes the individual different from an average person, where

the average person is represented by all the other people in the training set.

This system worked well, providing an overall verification accuracy of greater than

96% for a six class problem using six features for each prototype. The system provided

100% true acceptance accuracy (correctly identifying new instances of the individual) and

5-1



96% true rejection accuracy (correctly rejecting instances of people other than the individ-

ual).

5.2.2 Speaker Verifier. The original speaker identifier was based on Cepstral

extraction, and classified using a distortion metric in a 20-dimensional Cepstral space. To

increase the commonality between the face and speaker verifiers, we chose to convert this

system to a neural net based verifier, using the extracted Cepstral coefficients as the base

features for each speaker. As with the face verifier, these features were projected into KLT

space and KLT coefficients were extracted for presentation to the net. The training scheme

was identical to that used for the face verifier, training a net for each individual in the

training database.

The system showed substantially IFwer accuracy than the face verifier when tested

on a nine class, ten-dimensional problem. Overall accuracy was 60.5%, derived from 47%

true acceptance accuracy and 62% true reject accuracy. This decrease in accuracy is not

unexpected, and is due, we feel, primarily to one specific cause. All of the data (face and

speaker) was obtained on a single day. With face data, it was a relatively straightforward

process to ensure consistent positioning and scale of the face within the image using manual

segmentation. Capturing the speaker data, however, was a much less consistent process,

and it has been shown that more samples of speech would be necessary to form an 'accurate'

representation of an individual(9). Nonetheless, the goal was not necessarily to provide

some specific level of speaker verification accuracy, but instead to develop a baseline with

which to compare the performance of the fused identity verification system.

5.3 Dimensionality Reduction

The method used to select the number of features to present to the neural net was

based on KLT analysis for the base verification systems. We questioned whether selecting

the dimensions based on the eigenvalues of the covariance matrix of the original data was a

suitable metric. As a baseline, we trained nets for each of the individuals and determined

the eigen-dimensions to select which would result in the minimum training error. We

then trained each net using specific numbers of eigenvalue ordered dimensions (the KLT

5-2



method), and also the same number of dimensions ordered by a new figure of merit based

on the ratio of inter-class means to intra-class variance. It was found that the eigenvalue

ordered dimension selection performed nearly as well for faces as if the dimensions had

been selected based on minimum training error, and substantially better than the figure

of merit method. With speakers, the eigenvalue method worked somewhat better than

the figure of merit method, but provided poorer performance than the baseline, minimum

training error method. Therefore it was decided that the fused verification system would

use the KLT dimensional selection method for both the face and speaker verifiers.

We also explored a method of dimension reduction using a nonlinear, transformation

neural net, hoping to determine a new, reduced set of dimensions that would provide

better separability than does the KLT or figure of merit methodology. Using a standard,

backprop net, we first trained on two classes of data, using for weight update a rule based on

'pushing' elements of differing classes apart in the transformed space. When transforming

two-class, linearly separable, two-dimensional toy data into a new two-dimensional space,

the net clustered the data points to two points at opposite corners of the new space,

the desired effect. When two classes (five prototypes each) of actual 30-dimensional face

data were presented to the net, we again saw the same, distinct two-point clustering

take place, but each cluster contained four data points from one class and one from the

other. We also presented five classes of face data to the net, and found that though some

clustering did take place, there was a great deal of class overlap in the transformed space.

Preliminary classification testing using these transformed dimensions showed significantly

poorer performance than when eigen-dimensions based on either KLT or our figure of merit

were selected. We did not pursue this methodology any further.

5.4 Face/Speaker Fusion

As described above the identity verification system was based on extraction of six

KLT face coefficients and ten KLT speaker coefficients presented to nets specifically trained

for each individual in the training set. Using training data, the fused system was tested to

determine the optimal ratio of face net output to speaker net output to provide maximum

verification accuracy, and it was found that a ratio of 40% face to 60% voice provided

5-3



the best performance. With individual verification systems attaining only 55% (face) and

61% (speaker) accuracy, the fused system was able to attain 66% overall accuracy using

this ratio. This shows that the fusion did indeed increase the performance of the identity

verification system over either of the base verifiers.

5.5 Future Research

We feel there are are three primary areas that warrant further research. The first

involves segmentation of faces from images and the second exploring the effect of using

multiple days training and test data with the identity verifier. Finally, the nonlinear

transformation net has shown substantial promise, and we feel with appropriate 'tweaking'

it could serve a useful role in the dimension selection arena.

5.5.1 Face Segmentation. We have made the assumption in this research that

methods can be found to segment the face from an image and position, scale, and rotate

it into a desired, standard position. One promising method of finding the face has been

explored in a collateral thesis by McCrae and involves color segmentation (36). She has

trained a backprop net to recognize face color and has been able to successfully extract

the face from an image. Additionally, she has been able to use the same technique to

locate the eyes within the face. Once the positions of the eyes are known, the imag, .an be

scaled, shifted, and rotated until the eye points overlay some specific locations. -,stent

for every individual.

Another method showing promise for segmentation uses three dimensional, temporal

wavelets, introduced by Burns in his Doctoral dissertation (6). These wavelets can be

used to detect the movement of faces within images over time, and have the additional

advantage of removing stationary backgrounds from the images. This could make for more

robust classification/verification over systems requiring constant image backgrounds (over

the entire training and test sets) for good performance.

5.5.2 Multiple Day Problem. The multiple day face classification problem has

not been extensively addressed in the literature, though Colombi, Krepp, et al have studied

5-4



it at some length here at AFIT (9, 27). The basic problem is that though a face recognizer

may function quite well when using a single day's data, when presented with data from

other days the performance may be severely degraded. The fusion of face and speaker clas-

sification technologies may help to solve this problem by providing additional information

to the decision-making process. We have shown that the fusion of face and speaker veri-

fication can provide better performance for a single day's data than either verifier alone,

and believe that this performance increase will also be seen when the data set is extended

to include data from some larger, but still small, number of days.

To extend this concept, fusing other biometric classification systems with the identity

verifier developed for this effort may provide even better performance. Work is being

done in concurrent theses on fingerprint identification and written word recognition, and

we believe these techniques can be adapted to synergistically combine with our verifier

(32, 58).

5.5.3 Nonlinear Dimensionality Transformation. Though the initial testing with

classification using the nonlinear dimensional transformation net did not show any in-

creased, multi-class classification capability, there were some interesting results which lead

us to believe the method holds promise. The clustering tendencies exhibited show that

it may be possible to push class data points to different points in the transformed space,

given the proper weight update rule. We used a very simple rule based on pushing apart

members of opposite classes; this rule could be altered in several different ways. It could

be implemented in such a way that members of like classes could be attracted to each

other, while members of different classes would still be repelled. The net could also be

implemented with either of the above rules, but in a batch style, with all training vec-

tors presented to the net before updating the weights. An alternate update rule could

be derived based on a similar scheme to the figure of merit we developed for this thesis,

maximizing the variance of means between different classes and minimizing the intra-class

means. Other transformation methodologies within the net could also be explored, such

as adding additional hidden layers or using linear activations on the output nodes of the

net.

5-5



5.6 Conclusion

In the course of this research, we have found the answer to providing an identity

verification capability to be the fusion of face and speaker verification systems. Each of

these systems are based on KLT dimensionality orthogonalization and reduction, followed

by back propagation neural net classification. We determined that using the KLT provided

superior performance to using either a nonlinear transformation net or a figure of merit

based on the F-ratio.

We also found that for verification purposes, a collection of training prototypes of

different individuals can be used to represent a single class, an 'average' person. Using

this concept, a neural net can be trained to recognize the difference between an individual

and this average person. A net must be trained for each individual based on this two-class

idea, and when anyone presents themself claiming to be a specific person, the net trained

for that individual must be used to test the claim.

5-6



Appendix A. Software Development

A.1 Introduction

In this Appendix we shall examine the software modified or developed in support of

this research. All code was written in the ANSI Standard C programming language; though

implemented on a Sun SPARCstation 2, the great majority of it should be portable between

platforms. All the code developed for this effort is included at the end of this appendix for

reference. Much of the code is based on software developed during previous AFIT thesis

efforts, and such information will be provided in the headers of the code listings.

We will look first at the code written for the face verification portion of the system,

and then at the code written for the speaker verifier. We will next examine some of the

techniques developed to implement modifications to the individual verification systems,

and will finally look at the code used to tie together the two separate verifiers into a single

identity verification system.

A.2 Implementing the Face Verifier

The face verification system was designed to operate in three distinct stages:

1. Acquisition of images for training and/or testing.

2. Training of the multi-layer perceptron for each user.

3. Testing of new instances of a user claiming to be a member of the training database.

For the first stage, the program acquire was developed to capture images from a

video camera connected to a VideoPix frame grabber installed in the workstation. The

training of the neural net is accomplished by train-net, and verify-face-net permits

testing of the face verifier. Each of these programs are described in greater detail in the

following sections.

A.2.1 acquire. This program was designed to allow easy acquisition of face images

for either training or testing the verification system. If beginning a new acquisition session,

the program will first build training and/or testing sub-directories in which to place the

A-1



captured images; when adding images to an existing database, the new captures will be

placed into the previously created sub-directories.

The software controls the frame-grabbing capabilities of the VideoPix video capture

board, which is connected to the output of a video camera, and the user is allowed to

capture images at an arbitrary rate and time (limited by the hardware to four frames per

second). The captured image is presented to the user for examination, and if satisfactory

is saved to the appropriate sub-directory. This process continues until the desired number

of images have been captured.

A.2.2 train-net. This code allows training on each of the target images in the

image database and produces weight files for each target. It first uses the entire population

of training images to calculate the orthogonal eigenspace into which to project the faces,

and then saves the appropriate number of bases (where that number is user-determined) as

eigenface files. The eigenfaces are then used to extract KLT coefficients from each training

file, and these coefficients are written to a single data file for presentation to the neural

net.

Recall that because this is a verification net, there are only two outputs, verified or

not verified. For each target on which the net is to be trained we augment all the target's

coefficients with the desired node outputs of 0.9 and 0.1, and all other coefficients with

0.1 and 0.9. The net is then trained on this data to the desired levels of accuracy and

error, and the weights calculated for the target are saved to a separate file. The process is

continued until a net has been trained for all targets represented in the training database

and weight files have been produced for each.

A.2.3 verify-face.net. Performing verification with the trained net is accom-

plished using this program, where a test image may already exist in a file or may be

captured live for presentation to the net. One of the command line arguments is the

'claimed' identity of the image to be verified, and once the program is invoked it will build

a net based on the weights calculated by train.net.c for that particular individual. Af-

ter the test image is presented, the outputs of the net are adjusted for bias as explained

A-2



in Chapter 3, and the pseudo post-probability that the test image is an instance of the

claimed individual is calculated.

A .2.4 mlp-fuse. This code is the actual back-prop neural net used for classifica-

tion by both the training and verifying programs. A complete description and source code

listing can be found in the 1991 thesis by Krepp (27).

A.3 Implementing the Speaker Verifier

The speaker verifier is implemented quite similarly to the face verifier, a fact which

allowed substantial code re-utilization. Again, a three stage process was used:

1. Acquisition of speaker data for training and/or testing.

2. Training of the multi-layer perceptron for each user.

3. Testing of new instances of a user claiming to be a member of the training database.

The major differences in the two verifiers lie in the data acquisition phase. For capturing

and pre-processing speaker data, the ESPS® software package was used extensively, in-

cluding the routines mu2eps, filter, formant, refcof, select, and vqdes. A windowed

menu environment, SIDtool (Speaker Identification Tool) was developed to implement a

series of shell script files, which in turn called the routines listed above. After all the

speech was captured, train-net was again used to train a net for each target invididual,

and finally verify-voice-net was used to test the verification performance of the system.

A.3.1 mu2eps. This routine converts a standard Sun audio file captured captured

with the built-in SPARCstation audio equipment into a sampled format usable by the other

ESPS routines.

A.3.2 filter. An FIR (finite impulse response) pre-emphasis filter is applied to

the audio file by filter.

A.3.3 formant. formant applies a probability-of-voicing label to each frame of

speech.

A-3



A.S.4 refcof, spectrans. These programs will generate 20 Cepstral coefficients for

each frame of speech.

A.3.5 select. Using this routine, the frames containing voiced speech (determined

by the probability-of-voicing label) are segmented from the utterance.

A.S.6 vqdes. vqdes takes the raw Cepstral data and builds a codebook for each

individual consisting of the 64 codewords resulting from the LBG clustering process. These

codebooks are used to train and test the nets.

A.3. 7 train-net. This program functions as it did for training on images, project-

ing the speaker data into KLT space and training on the coefficients for each target. Weight

files are also produced, corresponding to the nets built and trained for each individual.

A.S.8 verify-voice-net. As with verify'Iace-net, speaker data is presented to the

appropriate net for verification and the pseudo post-probability of verification is computed.

A.4 Implementing Verification Modifications

To compare the performance of the verification nets using eigen-bases selected by

different criteria, capability was built into train-net to allow selection of the eigenvectors

based on eigenvalue, the figure of merit discussed in Chapter 3, or simple user selection.

Additionally, a method of non-linear transformation of the original eigen-bases to a new

reduced basis set was explored via the program trainxnet.

A.5 Implementing the Identity Verifier

The program verify-identity was written to fuse the verification probabilities pro-

duced by the programs verifylface-net and verify.voice-net. It functions by invoking

the two verifiers in turn, and then simply calculating the linear combination of probabilities

that resulted in the best overall system performance during training.

A-4



A.6 Code

The source code for most of the face and speaker verification programs described

above are included here. As mentioned, the scripts for controlling the speaker capture and

Cepstral processing can be found in a collateral thesis by Prescott (41).

A.6.1 acquire.c.

/.*********************************************************************
Program: acquire.c

Description: This program was written to allow the capture of gray-scale
images from a video camera and the VideoPix image capturing hardware

in a Sun SPARCstation. It will allow the creation of a new database
of training images, or the addition of new images to an existing data-

base. It will similarly allow the creation of a new database of test

images or the addition of new images to an existing set. Provisions
are included to either capture the images using manual segmentation,

or to capture images using Gay's automatic motion segmentation routines.

Author: John G. Keller

Date: I Sep 93

#include <stdio.h>
#include <string.h>

#include "vfc-lib.h"
#include "globals.h"
#include "jkfacros.h"

int i,
finished,
done,
quit,
num-protos,
num-train = 0,
num-class = 1;

FILE *fnograb;

char command[80],
u-name[8],
nu.rname[8],
filename[20],
waste[2],
another[4],
answer[4];

A-5



main(int argc, char *argvo)

I
int testnum. = 0;
char tcstdir[301 ] " show[12];

system(" clear 1);

/*a***Make a Training Folder to Hold the Prototypes ****

if (fopen(" ./train..inages/*.gra") == NULL) system(I"mkdir train-.inages");
if ((argc == 2 11argc == 3) && strcmp("add", argv[l]) == 0)

I
open-read(hnograb, "nograb-.param .dat");
fscanf(fnograb, "74\n", &num..protos);
fscanf(fnograb, "Xd~n", &num-.class);
fscanf~fograb, 'Id", &num...rain);
fdose(fnograb);

else if (argc == 2 && strcrap(I"test", argv[l]) #6 0)

f
printf("\n\nSYUTAX: acquire <add>Ctest>A . I)
exit(0);

/*aa**Prompt User for Number of Prototypes if necessary**a*****/

if ((argc == 2 11 argc == 3) 8z& strcmp("add", argv[1]) == 0)

f
system( "clear");

printf("\nYou have chosen to add one or sore individuals to the existing database. nFor
this database you will need 7d prototypes for each subject. \n", num-protos);

num..class++;

else

done = 0;
while (!done)

printf("\nEnter the number of prototypes to be used for each user <1-64>:';
scanf( "74" ,&num..protos);
/*gets(waste);a/

printf(l\n");
if ((num..protos < 64) && (num..protos > 1))

I
done = 1;

else
printf('\nYou need to do at least 1 and at most 64.\n");

A-6



/****************** Enter Users Until You're Done *************/

while (!finished)

I
done = 0;
quit = 0;

/********* Prompt User for User Name *******/

printf("CnEnter the person's username <8 letters or less>: ");

scanf("Is", unname);
gets(waste);
printf("\n");
i = 0;
while (u-name[i] #A '\0')

f
if (strlen(uaname) > 8)

f
printf("\nSorry, you're limited to 8 letters.\n");
break;
j

if (isalpha(u.name[i]))
i++;

else
4
printf("\nSorry, you can't enter any numerics into the user name.\n");

break;
}

)

while(!done)

I
printf("\nThe name you entered was :s\n",u.name);
printf("Please re-enter the name if necessary or press return to continue. ");

gets(nu-name);
if (nu-name[O] -- '\0') done = 1;

else
I
strcpy(u-name,nu-name);

nu-name[O] = 1\0';
}

}

/*********** grab training images of the user

Loopli(num-protos){
sprintf(filename,"%sd",u.name,i);
autograb(filename);

A-7



apriiitf(show, "displayl4", SM..WIDTH);
sprintf(command, "II U. .gra", show, filename);
syutem(command);
printf("\nl the picture satisfactory (yin)? '9);

gets(answer);
if (answer[0 = ''

f
if ( i < num..protoe) printf("\n~kay, now for prototype number %d. \n", i+1);
sprintf(fllenaime, "%~d~s" ,uixame,i,".gra");

sprintf(command, "nv %s, /train-.images", filename);
system(command);
num~train++;

else i - 1;

/********Grab test images if the 'test' argument was ue********

if ((a~rgc ==3 && strcmp(argv[2], "test") == 0) 11 (argc == 2 && strcmp(argv[l], "teat") ==0))

I
if (testnum == 0)

f
printf("\nHow many test images will you want f or each user?")
scanf("ld", &testnum);
gets(waste);
if (fopen("I./test-.imagese"*I) == NULL)

I
sprintf(command, "makdir ./test-.images", testdir);
system(conimand);

Loopli(testnum)

f
sprintf(filename,"%s~dt" ,u..name,i);
autograb(filename);

sprintf(command, 11%s %s. gra"l, show, filename);
system(command);
printf("\nls the picture satisfactory (y/n)? 19;

gets(answer);
if (answer[0] =y'

if ( i < testnum) printf("I\nOkay. now f or test image number %d \nI, i+1);
sprintf(filenaie, "%sldtls" ,uaiame,i,".gra"l);

sprintf(coxnmand, "mnv %s. /test-.images", filename, testdir);
system(command);

else i -= 1;

A-8



printf("\Process another individual? <y or n>:
gets(another);
while (!quit)

I
if ((another(O] =n 'n') 11 (another[O] == '!1'))

{
finished = 1;

1*********Save the nograb-param.dat information**sa******** /

open-write(fnograb, "nograb.paran. dat");
fprintf(fnograb, "%d\n", num-protos);
fprintf(fnograb, "ld\n", num-class);
fprintf(fnograb, "%d\n", num-train);
fdose(fnograb);
quit = 1;

else if ((anotherO] == 'y') (another[O] =-Y))
I
finished = 0;
nurmclaas++;
quit = 1;
I

else

f
printf("\n\nHit y if you want to enter another user.\nHit n if you're done entering

users. : );
gets(another);
printf("\n");
}

}

system("ra *s.ui);
system("rs * .gra");

A.6.2 train-net.c.

Program: train..net.c

Description: This program is used to train a system based on KLT feature
extraction and a neural net dassifier. The grab routine is first
called to collect the training images. After all images of a
particular user have been collected, each of the images are
preprocessed (centered and gaussian windowed). The preprocessed images
are then used by kLtransform to create an average face and a user determined

A-9



number of eigen faces. The coefficients module is then called to extract the kl coefficients from the training
images. These coefficients are stored in a data
file called klt.dat to be used by the neural network training algorithm.
The neural network algorithm creates a weight file which will be used
in the recognition phase. The outputs of this code are 1) the klt.dat
file, 2) the setup file for the network, and 3) the weight file created
by the network. All training images are stored in a folder called training-mages for possible use in
retraining the system at a later date.

Author: Ken Runyon

Date: 25 Sep 92

Modified by: John Keller

Date: 15 Jul 93

Modification Description:
- Modified to allow multiple command line options.
- Modified to function with the face/speaker fused verification system. Images will be grabbed by the

program 'acquire' beforethis program is invoked. It will read prototype and image information from the
file nograb-param.dat, then will pre-process theimages if required. The basis set will be calculated, and
thenindividual weight files will be produced by training the net for
each user on the list user-fist, with a particular user's files being
assigned to class I while all the other files are assigned to class
2 and so on.

- Modified to perform same function with speaker files as face files. Will allow processing of individual
vectors from speaker codebook, or concatenation of raw speaker Cepstral vectors to allow retention of
temporal relationships.

- Modified to permit selection between three different dimension ordering schemes: eigenvalue (traditional
KLT), figure of merit, and nonlinear transformation.

- Modified to require external source.setup.mlp file be kept in same directory from which train-net is
run. This allows reparameterization without recompiling.

#include <stdio.h>
#include <string.h>
#include "vfc-1ib.h"
#include "globals.h"
#include "jimacron.h"

/**********Define neural net parameters****************/

#define NUM-LAYRS 2
#define WT.SED 1918940490
#define PARTSED 1191645590
#define RNDM-SED 123456789
#define MAXITS 1600
#define OUTINT 100
#define ETA-IN 0.15
#define ETA-OUT 0.3
#define ETA-I_2 0.0
#define ALPHA 0.5

A-10



#define BAT-SZ I
#define TRAINYPCT 1.0
#define NORM I

void voice-iet..coefficientsO), face..net..roefficientso;

float finumber, 11waste;

int. i, j, k,
temp,
done,
num-protoe,
user..coels,
num..coefs,
num-train = 0,
num-.class,
number!,
number2,
type,
FACE,
SPEAKER,
NOPROCESS,
FOM,
int..waste,
num..vectors,
vectors-peLrclass,
num-Ieatures,
num..chunks,
chunk.sze,
num-in..chunk,
total-nunL-coefs,
min-numn-vectors,
user-.counter = 1,
identity,
Count,
leftover;

FILE *fparam,
*flist,
*fweights,
*fset,
*ftable,
*fnograb,
*fdat,
*fdat2,
*fuser,
*fsaznple,
*handle,
*nonlindata;

char wt-file[10J,

A-l1



mag[40],
datiile[1O],
U..namej8],
nu-name[8],
filename[20],
waste(2],
username[16],
usernazne2[16],
userl[201,
hid-nodes,
chwaste[40],
hid..nodes2,
command[301;

main(int argc, char *argvfl)

t
if (argc == 1)

t
printf("\n\nSyntax: train-.net <face, speaker> 0f on, eigvalue ,nonhin>E(zoprocess (only valid

for face)]J\n\n'I);
exit(O);

if (strcmp("f ace", argv[1]) == 0)
t
NOPROCESS = 0;
if (strcmp(argv[2], 'Ifon") == 0) FOM = 1;
else if (strcmp(argv[2], "eigvalue"l) == 0) FOM = 0;
else if (strcmp(argv[2], "noulin") == 0) FOM = 2;
else

t
printf('\n\nSyntax: train-.not <face, speaker> <foxm, eigvalue ,nonliza)[noprocess (only

valid for face)] \n\nII);

exit(O);

if (argc == 4 && (strcmp(argv[3], "noprocess") == 0)) NOPROCESS = 1;
else if (argc == 4 && (strcmp(argv[3], "noprocess") 96 0))

t
p , -tf("\n\nSyntax: train-.net <face, speaker> 0f on, eigvalue, nonlin> [noprocess (only

valid f or fac.)J~nWn);
exit(0);

type = 1;
FACE = 1;
SPEAKER = 0;

else if (strcmp("sopeaker", argv[l]) == 0)

if (strcmp(argv[2], 'If an") == 0) FOM = 1;
else if (strcmp(argv[2], "eigvalue") == 0) FOM =0;

else if (strcmp(argv[2], "nonlin") == 0) FOM =2;
else

A-12



printf("'~u\nSyntax: train-.net <face, speaker> <to&, eig'value ,nonlin>Enoporocess (only
valid for face)J\n\nII);

elit(O);

type = 0;
FACE = 0;
SPEAKER = 1;
open-read(fuser, "speaker-.list");

else

printf("\n\nSyntax: train-net OIace, speaker> Oona, eigvalue, nonlin>(noprocess (only valid
f or face)JI\n\nl);

exit(O);

/*eeeee*e~ee~fFace processing, start here***********

NOPROCESS = 1;
if (FACE I= && fopen(1"e.gra", Sir") 96 NULL) system(Ilrm 10grall);
if (FACE ==1)

I

/eeeeeeeeeeeGet the face info from the nograb-param.dat file*************/

open-read(fnograb, "nograb-.param .dat");
fscanf(fnograb, "%d\n", &num-.protos);
focanf(fnograb, "Mdn", &num..class);
ficanf~fograb, 'Id", &numArain);
fcloue(fnograb);

/************Put together the list of trainingfaeeeeeeeeses/

system(l"cp train-images/e .gra .11);
system("lls *.gra > I ace-.list");
open..read(iflist, 'Iface-.list");
if (NOPROCESS == 0) /*If~rz. p.ocessing will be required...*/

f

/***************eCheck that the correlation files ex~s, eeeeeeee

open-read(handle, 'correlate .ref"1);
open..read(handle, "wind ref'");

/****e************** Pie-process the imnageseee*****eeseeseeese*ee

Loopli(numtra~in)

printf("\n~ow pre-processing image S .Xi'1

A-13



Iscani(flist,"Zs\n" ,filename);
center(SM-WIDTB, "correlate. ref " ,filenamne);
gwind(SM..WIDTH,filename);
center(SM..WIDTH,"lwind .ref 11,ilename);

I
fdose(Sist);

/eeeeeeeeeeDecide how mnany eigenvectors you need **.**/

done = 0;
while (!done)

printf(I\nEnter the number of eigenf aces on which you want to train <%d>: Inum.~rain/3);
incat('Ild" ,&user.eoefs);
geta(waste);

printf("\n");
if ((user..coefs > 0) && (user-coefs < num.Arain))
f
nurn-.coefs = user-coefs;
done =1

else if (user..coefs= '\0

f
nun-coefs = num..train/3;
done =1

else
printf("\R~ou need to train on at least 1 and at moat %d eigenfaces\U1",numlrain);

/e~e***.ee***e~fspeaker processing, start hrese********

else if (SPEAKER == 1 && argc < 3)

1
syutem("rm eigmnpeaker."1);
printf("\nEnter the number of eigenspeakers on which you wish to train: "1);

scanf("Id", &num-coefs);
gets(waste);
printf("\nlnter the number of individual eigenframes to concatenate: 1)
scanf("Id", &num..in-chunk);
gets(waste);

else if (SPEAKER == I && argc > 3)

num..coefs = atoi(argv[3]);
num-in..chunk = atoi(argv[4]);

A- 14



...... ***Calculate the orthogonal basis set***s***.*/

if(FACE == 1)
I
if (fopen("eig4nl aceol" sor") iA NULL) system("ru eigmnlace*11);

if (FOM == 1) foma-zoutine(Iface..list", type, num-.coefs, SM..WIDTH, num-train, nuin-clans, num-protoe);
else if (FOM ==0) klt..routine("fac*-.list", type, num-.coefs, SM..WIDTH, num.Arain);
else if (FOM ==2) /***Using non linear xformation.*/*

I
kit-routine("Iface-.list", type, num-features, SM..WIDTH, num-train);

elei)(PAE
I

if (fopen(I'.igwspeaker.'1, "Ir") 96 NULL)
syatem('lra eigenspeakor"");

if (FOM == 1)
fom..routine(I"speaker-.li~st', type, num..coefs);

else if (FOM ==0)
klt-routine("sopeaker..list", type, numn.coefs);

else if (FOM == 2)
1
int..waste = 20;
klt-routine("aspeaker..liat", type, int..waste, num..coefs);

num..dams = 2; /****Classe are either Joe or NtJe******

/.*.***. Create the lookup table for the neural network ... *

open-write(ftable, "lookup");
fprintf(ftable, "Zes\n", "invalid");
fprintf(ftable, "%Ss\n"l, "valid");
fdose(ftable);

if (FACE == 1)
I
open-read(fiist, 'If ace-.list");
open..write(fuser, "1user..f ace..list");

elme if (SPEAKER == 1)

I
open..read~flist, "apeaker-.liat");
facanf(flist, 'Is", chwaste);
fecauf(Iist, "Ud", &num~train);
fscanf(flist, 'Id", &vectors-per-dcass);
Iscanf(flist, "Id", &numifeatures);
open-write(fuser, "user-s.peaker-list");

A-15



strcpy(username2, ")

Loopli(num-train)

fscanf(flist,IIs\n"I,fllenazne);
strcpy(username, filename);
j = 0;
while(usernainej] 96 1\0')

if (isalpha(usernameUjI))

else
usernameUl = 0;

I

strcpy(nsername2, username);
fprintf(fuser, "1U\n", username2);

icloee(fuser);
fclose(ffist);

*********Create the data file for the neural network***s*s/

if (FACE =)

type = 1;
open-read(flist, "face-list");
open..write(fweighta, "klt...1.dat");
fprintf(fweights,"%d\n1Cd\n",num.coefs,num-cdaa);
system(I"r. eiLgcoe~fsa");
Loopli(num..train)

I
ficanf(Ifist,"Wsn" ,filename);

if (FOM 96 2)
face..net..coeffidents(SM..WIDTH, num..coefs, filename, fweights, ftable, num..class, FOM, type);

For the nonlinear transformation, first use 'net-.coefficients to extract
all the eigencoefflaients from the training set, then use 'xnetpush' to

transform these coefficients into num..coefs dimensions for each prototype.

else if (FOM == 2)
face..net..coeffidients(SM..WIDTH, num~train, filename, fweights, ftable, num..class, FOM, type);

fclose(fweights);
if (FOM == 2)

4
open..read(fweights, Ilklt-.f .dat"l);
open..write(nonlindata, 'If acetest .dat");
fprintf(nonlindata, "%d\n~d\n~d\n", num.Arain, num..rain/num..protos, num..protas);

A-16



Loopli(2)
focanf(fweights, "Ud", &int-waste);

Loopli(num..train)

fiscanf(fweights, '"4", &int-waste);
Looplj(num-.train) /.**Num of feat ures***/

focanf(fweights, "11 ", &Awaste);
fprintf(nonfindata, "U 11, Awaste);

Looplj(2)
fscanf(fweighta, "1if 1, &Liwaste);

fprintf(nonlindata, 'An");

fclose(fweights);
Wcose(nonfindata);
sprintf(coznmand, "'uak...bprit 1d", numx.oefo);
system(command);
symtem("mnetpush faceteat .dat");
opeu..read(nonlindata, "neatest .dat");
open..write(fweights, "klt-.f .dat");
fprintf(fweighta, "IdUld\n", num..coefs, num..class);
Loopli(num..train)

fprintf(fweighits, "1d ", i - 1); /***Exemplar***/
Looplj(num-.coeis)

fecanf(nonlindata, ":f ", &A-waste);
fprintf(fweights, "11 ", Li-waste);

fPrintf(fweights, "0.90000 0. 90000\n");

fdlose(fweights);
fclose(nonlindata);

This is the end of the nonlinear xformation part. The kitifdat file
has been rebuilt with 'num..coefs' number of new features for each
prototype.

I

open..read(fuser, "user-s.peaker-list");
mninnnum.vectors = 1000;
Loopli(num. train)

I
fscanf(fuser, "W'", username);
sprintf(mag, "Is. trainspeech", nsername);
open-read~ffist, mag);

A-17



fucanf(flist, 'Id", &temp);
if (temp < min..num..vectors)

min..num-vectors = temp;
fclose(flist);

rewind(fuser);
Loopli(num..train)

I
facanf(fnser, "U.", username);
sprintf(m~sg, "7.,. trainspeech", username);
open-iead(Rist, mag);
sprintf(msg, "7... kt-...dat", username);
open..write(fweights, msg);
if (FOM 96 2)

voice-net..coeffidents(num-features, num-coefs, fweights, flist, num..class, min-num..vectors);,
else

voice..net..coefficients(num-features, num-features, fweights, flist, num..class, min-.num..xectors);
fclose(fweights);

rewind(fuser);
open..write(fweights, "lkit....dat");
fprintf(fweight,"7d\nUd\n",num-coefs,num..class);
Loopli(num..train)

I
fscanf(fuser, "U.", username);
sprintf(mag, "Is. kt.....dat", username);

open-read(handle, msg);
Looplj(min..num..vectors)

I
Looplk(num..coefs)

I
fscanf(handle, "7.1", &llnumber);
fprintf(fweights, "If ", finumber);

fprintf(fweights,"I\n");

I
Mcose(handle);

fdose(fweight~s);
fclose(fuser);

We now have the klt..s.dat file containing an equal number of sets of
kit coeffidients for each user. We next will rewrite the klt-s.dat
file to represent concatenated "chunks" of vectors. If using the
actual codebook vectors rather than the source speaker data, we don't
need to do this; we'll want each "chunk" equal to 1.

num..chnnks = (int) (min-num-vectors/num-in-chunk);
total-num..coefs = num-in-chunk * num-.coefs;

A-18



open..read(fweigixts, "klt...a.dat");

open..write(handle, "tep. dat");
Loopli(2)

facanf(tweights, "%d", &temp);
fprintf(handle, "Xd\n", temnp);

count = 0;
Looplk(nam-train)

f
Loopli(num-chiunks)

I
fprintf(handle, "%d "1, count);
Looplj(total-num-.coefs)

I4
fscanf(fweights, "U", &finumber);
fprintf(handle, "U "1, finumber);

fprintf(handle, "10. 10000 0. 10000\n");
count++;

leftover = (min..num..vectors * nnm..coefs) - (num..chunks *totaL-num..coefs);

Looplj(leftover) fscanf(fweights, "U", &waste);

fdlose(handle);
fdlose(fweights);
system("mav teup.dat klt-.s.dat");

This is the beginning of the non-linear transformation portions for
speakers. It functions the same as described above for faces.

if (FOM == 2)

open-read(fweights, "klt-sa.dat");
open..write(nonlindata, llspktest .dat");
num..protos = 64;
fprintf(nonlindata, "1d\n~d\n~d\n", num..features, num-train, num..protos);
Loopli(2)

fscanf(fweights, "Ud", &int-.waste);
Loopli(num..ra~in)

I
fscanf(fweights, "Ud", &int..waste);
Looplj(num..train)

4
facanf(fweights, "%f 1, &fl-waste);

fprintf(nonlinda~ta, "%f ",-waste);

Looplj(2)
fscanf(fweights, "%fU If"&l-waste);

A-19



fprintf(nonlindata, 'An");

fdlose(fweights);
Iclose(noulindata);
sprintf(command, "sake..bpuet %d", num..coefs);
system(command);
system("xnotpush apkrteat .dat");
open-.read(nonlindata, "neutest .dat");
open..write(fweights, "lkit... .dat");
fprintf(fweights, "id\nid\n", num..coefs, num..class);
Loopli(num-.train)

f
fprintf(fweights, "Id ", i - 1);
Looplj(num..coefs)

I
fscanf(nonlindata, "%f"1, fl-waste);
fprintf(fweights, "if "1, flwaste);

fprintf(fweights, "10.90000 0. 90000\n");

fclose(fweights);
fclose(nonlindata);

This is the end of the nonlinear xformation part. The kit-s.dat file
has been rebuilt with 'eigcoeffs' number of new features for each
prototype.

1 ***End 'if SPEAKER == 1'dause***/

So now the file klt..s.dat contains m rows of eigen-coefficients
corresponding to m prototypes for each user.

/g*****Create the train..pararns file for the face verification phase**

if (FACE == 1)

I
open..write(fparam, "train-.f...parans");
fprintf(fparam, "id\nid\nid\n~d\niid\n",SM-WIDTH,num-coefu,num-train, num..protos, num..claaa);

I
else if (SPEAKER =)

I
open-write(fparazn, "train-.s..paxrans");
fprintf(fparam,"id\nid\nid\nid\n",num-coefs, iwm..class, num..in..chunk, numdrain - 1);

A-.20



fcloee(fparam);

/.****s***********Now train the net for eachuerss****s*/

if (FACE == 1)
strcpy(filename, "user.f ace..list");

else if (SPEAKER == 1)
strcpy(filenanie, "user-s.peaker-list");

open..read(fuser, filename);
if (fopen("teup.dat", 1IrI") NULL)

system("ru temp .dat");

while (fscanf(fuser, "W'", username) 96 EOF)

I
printf("\n\n\n\n\n Training the net for user %s. \nI", usernaine);

Now copy the klt.dat file created during the (voice..)net-coeffidients program
to a new file, replacing the last two numbers in each vector with 0.1 and 0.9,
depending on which class the particular image (speaker) belongs to. Remember,
there are only two classes: either the vector is a particular user,
or it's one of the other users.

if (FACE == 1)

open..read(flist. "f ace-.list");
open-read(fdat, "klt..f .dat");
open..write(fdat2, I'tenp. dat"l);
fsca~nf(fdat, "Xd\n~d\n", &numberl, &number2);
fprintf(fdat2, "Mdu~dn", numberi, number2);
Loopli(nnm..rain)

I
fscanf(fdat, 11%d", &numberl);
fprintf(fdat2, 11%d ", numberi);
Looplj(num..coefs)

I
fscanf(fdat, 1If ", &fInumber);
fprintf(fdat2, "If "1, finumber);

ficanf(fdat, 11%f", &flnumber);
fscanf(fdat, "1I1", &Ilnumber);

fscanf(flistI~s\n", &fllenaxne);
strcpy(userl ,fllename);

Parse the current images filename to determine whether it is the
same as the user currently being trained on.

A-21



j=0;
while(userfj] 96 '\01)

I
if (isalpha(userlU]))

else
useri1i] =0;

if (strcmp(userl, usernanie) ==0)

I
fprinzf(fdat2, "10.900000 0. 100000\n");

else
fprintf(fdat2, "0.100000 0. 900000\n");

) /**End of 'if (FACE == 1)' clause ***/

else if (SPEAKER =-= 1)

f
open-zead(fdat, "klt...s.dat");
open..write(fdat2, "teup .dat");
f~scanf(fdat, "ld\n~d\n", &numberl, &number2);
fprintf(fdat2, "%d\nld\n", tota~num.coefs, nuraber2);
Loopli(num-.train)

I
if (i == user-.counter) identity = 1;
else identity = 0;
Looplj(num-chunks)

f
fscanf(fdat, "U4", &numberl);
fprintf(fdat2, "74 ", numbedi);
Looplk(total-num-coefs)

I
ficanf(fdat, "%f ", &flnumber);
fprintf(fdat2, "%:f ", finumber);

if (identity == 1)
fprintf(fdat2, "0. 900000 0. 100000\n");

else
fprintf(fdat2, "10.100000 0.900000\n");

Looplk(2)
fscanf(fdat, "%f"1, &flnumber);

user-.counter++;
fcose(fdat);
fcloee(fdat2);
fclose(flist);

A-22



if (SPEAKER == 1) aystem("mv teup.dat klt-s.dat");
else if (FACE == 1) system('nv teup.dat klt-f.dat");

1*********sinuser name to weights fl~*********

if (FACE == 1) sprintf(wt-lMe, "Xasj...klt. fts"1, username);

else if (SPEAKER == 1) sprintf(wt-ile, "%as-.s.k1t .wts", usernanie);

/.e~**ee***Create the setup file for the neural network *s**/

if (SPEAKER == 1)

I
num..coefs = tatal-num..coefs;
strcPy(datille,"klt...a.dat");

else
strcpy(dat-fle, "lkltj .dat");

hid-.nodes = 2 * num..coefs;
hid..nodes2 = 0;

open..read(fsample, "lsource..setup .sip");
open-write(fset, "setup .alp");
Loopli(4)

f
fisanf(fisample, "Ud", &int-waste);

f~inlst dn, n-at)
fprintf(fset, --%a -s'tore weights\zi", wt-ffie);
fscanf(fsample, "Ud", &int-waste); /***Max iterations*I*/1
fprintfffset, "Zd\n", int-.waste);
fprintf(fset, "Ild %d %d Mdn", num..coefs, hid-.nodes, hid..nodes2, num.Alass);
fprintf(fset, "%a -data\n", datille);
facanf(fsaxple, "Ud", &int-waste);
fprintf(fset, "Id\n", int-waste);
Loopli(4)

I
ficanf(fiample, "If ", &fi.waste);
fprintf(fset, '%1f\n", flwaste);

I
fprintf(fset, "%d\nlf \nld\n", BAT..SZ,TRAINYPCT,NORM);
ffclse(fiet);
fclose(fsample);

system(".plu..fuse-trn"l);
) /*se**e**Clks~ing while loop*****/

fclose(fuser);
if (FACE == 1) system("zua *l.exa");

printf("\nTRIINIUG IS COMPLETE\n");

A-23



A.6.3 face.net-coefficients.c.

Program: face-net-coefficients.c

Description: This program maps a test face onto the set of eigenfaces and stores the KL coefficients in
train-coefs in a format the neural network can read.

Author: Pedro Suarez (Originally recon.c)

Date: 24 July 91

Modified by: Ken Runyon (Chopped off reconstruction)

Date: 22 Jun 92

Modification Description: I decided we didn't need to actually reconstruct and store a face. I also made
the stand alone program into a module which is called by thesis.

********************************** ******* *****

#include <stdio.h>
#include <math.h>
#include "kjkacros.h"

void face-net-coefficients(dimension, num-coefs, infilename, outfile, classfile, num-class,fom, type)
int dimension,

num-coefs,
num.class,
fom,
type;

char inflenameo;

FILE *outfile,
*classfile;

{
FILE *facel, *eigenin, *train, *face-avg, *testfile;
int i, j, 1, N, M, atoio;
static int count = 0, exemplar = 0;
float *vectorO, **matrixo, *averagelace, **u, *pedro, *reconface;
float *w, *I;
char fllename[81], *strcpyo, user[15], ext[10];
static char user1l15],user2[15];

#ifndef RESULTS
printf("\nPulling Coefficients for Ws\n",infilename);

#endif

f****************** Set Up Files *************************

A-24



/s*Open Test Face **

if ((iacel=fopen(infilena~me,"r"l)) ==NULL)({

printf("II can't open the input file");

fe.Open Avg Face e/

if ((face..avg=fopen("avg-jace .dat" ,"r")) ==NULL)({

printf("I can't open avg...face.dat."1);
exit(-1);

/ee.set up matrices***/

N =dimension * dimension;

M =num-coefs;

u =matrix(1,N, 1,M);
pedro = vector(I, N);
average.Ii~c, = vector(1, N);
reconface = vector(l, N); /*** DO I NEED THIS? #e

w =vector(l, M);
I =vector(l, N);

/A***** Initalize Matrices .. /

forUj=1; j:5M; j++)

wjj]=u[i][j]=I[i]=pedro[i]=reconface[i]=average..a~ce[i]=O.O;

Iee...Load the Test Face into the Pedro Vector eeee.

forUj=l;j<5Nj++)
ficanf(facel1%"f \n"I, &pedro~lj);

fclose(facel);

Iee.e.Load the Average Face into the Average-Face Vector ./

forUj=1 j<Nj++)
fscanf(face..avg, I"%f\nII, &average-faceU]);

fclose(face..avg);

fec.Load the Eigenfaces into Matrix U .e/

open-read(train, 'Iface-train out"l);

for0=1; j:5M; j++){
fscanf(train, "ls\nI", filename);
eigenin = fopen~filenaine, FYI)

A-25



facaaf(eigenin,"lf\n",&u[i]fj]);

fclose(eigenin);

floee(train);

/m***Subtract the Average Face from the Test Face **/

for(i=1;i<N;i++)
I[i]= pedro~i] - averagelacefi];

/****** Calculate the KL Coefficients **/

fO!o=1; j<M; j++)
for(i=l; i<N; i++)

wull = uRiBIj* IRI]+ wuj];

/****.* Write an exemplar number to the file***/

fprintf(outfile, "%d 1, exemplar);
exemplar++;

/****** Write the Coefficients to the *..coefis File***/

/******* Write test file containing just the eigcoeffs******/

open..append(testfile, "leigcoeff a');

for(i=1; i<M; i++)

I

fprintf(testfile, 'An");
fclaee(testfile);

/****** Write the desired outputs to the *.coefs File s**

fior(l=num..cassl1>1;1--)
fprintf(outfile,'%f 1,O0.90000);

fprintf(ontfile, 'An");
free-matrix(u,l,N,1,M);

}/* end coeffidients.c *

A-26



A.6.4 voice-net-coefficients.c.

Program: voice-net-coeificients.c

Description: This program will take a set of voice codebooks, extract the KLT coelficients of each, and
write them to the file klt.dat for use by the net.

Author: John G. Keller (based on the program "recon.c" originaly written by Pedro Suarez and
modified by Ken Runyon).

Date: 22 Aug 93

#include <stdio.h>
#include <math.h>
#include "j'kacros.h"

void voice.net-coefficients(length, num-coefs, datfile, userfile, num.class, num.train)
int length,

num.coefs,
num-class,
numotrain;

FILE *datfile,
*userfile;

{
FILE *code, *eigenin, *train, *avg.voice;
int i, j, k;
int exemplar = 0,

waste;
float *vectoro,

**matrixo,
*average.voice,

*voice,

*I;

char filename[81];

/****** set up matrices ******/

u = matrix(l,length, 1,num.coefe);
voice = vector(I, length);
average.voice = vector(l, length);
w - vector(l, num.coefs);
I = vector(I, length);

A-27



/.*a.litalize Matrices a.*

LoopWi(num..coefa, length)
w~i]=uUj][i]=Ilj=voicebl=avera~ge..voicejjI=0.0;

/**s.Load the average voice into the average-voice vector */

opea..read(avg-voice, Ilavg..speaker.dat ');

Loopli(length)
fscanf(avg..voice, "11\n", &a'verage..voicerij);-

fclose(avg..voice);

,A.****. Load the Eigenapeakers into matrix U **/

open-read(train, "apeaker..train. out");
Loopfi(num-.coefe)

facanf(train, "Us\n', filename);
open-read(eigenin, filename);
Loopljoength)

I

fclon(eigenin);

fdose(train);

Now loop through the data, taking one full vector at a time and
pulling the kit coefficients.

Loopli(2) fncanf(nserffle, 11%fV, &waste);
Looplk(num..truin)

I

/.*aa*Load the speaker vector into voice-vector ***a*

Loopli(length)
fscanf(userfile, "UI", &voiceDi];

/****** Subtract off the average voice**a/

Loopli(length)
$~]= voice[i] - average-voice[i];

/****** Calculate the KL Coefficients***/

w[l] = 0.0;
Looplij(num..coefs, length)

WRi] = ujj]I] * 'IDi+ wRI];

/**g*Write the Coefficients to <user>..s.k~t.dat *s/

A-28



Loopli(num-coefs)
fprintf(datfile, "1If , w[il);

fprintf(datfile, "'n");
}

fclose(userfile);

fmeeamatrix(u,l,length,l,num-coefs);
free-vector(voice, 1, length);
free.vector(average-voice, 1, length);

free.vector(w, 1, num.coefs);
free.vector(I, 1, length);
I

A.6.5 kit-routine.c.

Program: klt routine.c

Description: This routine is based around the Jacohi rotation routine
found in Numerical Recipes in C. Given a data matrix, it will first calculate
the covariance matrix, and then the eigenvectors. The eigenvector matrix
is then put into descending eigenvalue order and returned to the calling
program. The eigenvectors may also be printed out here by un-commenting
the appropriate lines. The routine can be used with either face or speaker data.

Author: John G. Keller/Dennis Krepp

Date: I Sep 93

#include <stdio.h>
#include <math.h>
#include <string.h>
#include "jkwacros.h"

klt.routine(char filelista, int type, int num.eigvectors, int dim, int num-train, int increment)
{

FILE *datfile, ,outfile, *average, *train, *code;
int length,

waste,
num-codewords,
num-classes,
numnkeep.dimensions,
dim.number;

int ij, N, k, M,
urot;

float **matrix(,

A-29



*vector().

**A..traas,

*average..temp,
temp;

void free-vectoro, free-matrixo, eigerto, jacoblO;

char type-iame[3O1,
avgiile[30],
msg[30],
msgl[30J,
filenauie[40],
file[4O],
dataJilename[40];

open-rea~d(train, ileleist);
if (type == 0) /**.If speaker verification***./

fscanf(train, "Us", datajilename);
fecanf(train, "Ud", &num-classes);
fscaaf(train, "Ud", &num..codewords);
bcanf(train, "Id", &length);
num..train = num..clasaes * num..codewords;

else if (type == 1) /**i'If face veziihcation*.*/

length = dim * dim;

i =0;

atrcpy(type..name, I'l');
while (fileilist~i] # '* fileiist~i] 96-'

if (fi~leilist[i] = *I fileiiat(i] =

type..nameWi 0;
break;

type-.name[i] = file-jistfi];

/i* *Allocate memory

A-trans = matrix(l,numArain,1 ,Iength);
A = matrix(l,length,l,num~train);
average-temp = vector(1,length);

A-30



if (type == 0) /a**Spea~kere*/*

f
L = xnatrix(l,length,l,length);
d = vector(1ljength);
v = matrix(lIlength,l,length);

else if (type == 1)

L = matrix(l,num-train,l,num-.train);
d = vector(1,num..train);
v = matrix(l,num..train,l,num..train);

***Initalize matrices and vectors***/

if (type == 0) /.**Ifspeker***/
4
Loopli(num..train)

t
Looplj(length)

A~raas[i](j] = AUj][i] = 0.0;

Loopli(length)
I
d~iI = average..temp[i] = 0.0;
Looplj(length)

L~i]Lj] = vfi][j] = 0.0;

I

Looplk(num..train)

'vli][k] = L[i][k] = 0.0;
Looplj(Iength)

A-trawi[iJ]j] = AUj][i] = 0.0;

if (type == 0) /***Speaker**s/
f
printf("\nmhe users being trained on are :nn)
open..read(code, data-Jilename);
Loopli(num..train)

I
if (i ==1 ((num-.codewords + 1) % i) == 0)

f
facanf(train, "Zs\n", filename);

A-31



printf("\t\tls\n", filename);

Looplj(length)

I

I

printf('The f iles being trained on are n";

Loopli(num~train)

f
flscanf(train, "Xs\n", filename);
printf("\t\tUs\n", filename);
open-.read(code, filename);
Looplj(length)

fdoee(code);

if (type == 0) fcloee(code);
fclose(train);

/*e********e*****Calculate average vector*******************/

sprintf(avg..fle, "avg..?.a.dat", type-namne);
open-write(average, avgiile);
Loopli(Iength)

temp = 0.0;
Looplj(numnArain)

temp += ADi][];

average-temp[i] = temp/num-train;
fprintf(average, "Zf\n", average-templi]);

fclaee(average);

/*e***********e*Subtract average vectoree******s*s*e*******s/***

Looplj(num-train)
Loopli(length)

A[i]DI = Afi]U] - average-temp[i];

free..vector(average..temp, 1, length);

/eee**e** ee***Make transpose mtrxs***s*******

Looplj(num~train)

A-32



Loopli(length)
A...ransj][iI = A[i]lj];

1********a**s******** Matrix multiply A by isl********

if (type == 0) /***Speaker***/

I
Loopli(length)

Looplj(length)

I
temp = 0.0;
Looplk(num..rain)

temp = temp + A..trans[k][i] *Ablik];

L[i][] = temp;

eleif tp =1
I

Loopli(num..rain)
Looplj(num..rain)

I
temp = 0.0;
Looplk(ler~gth)

temp = temp + A..rans~i][k] *A[kIV];

L[iIj~j = temp;

I
free-matrix(A...rans, 1, num~train, 1, length);

/.a*******a*a****Do Jacobi rotation and sort eigenstuffsa***a****/*
if (type == 0) /***Speakers**/l

I
jacobi(L, length, d, v, &nrot);
eigsrt(d, v, length);

else if (type == 1)

I
jacobi(L, numArain, d, v, &nrot);
eigsrt(d, v, num..rain);

/********a*********Find eigenbasess****a**************a**a****s****/

ui = matrix(l, length, 1, num..train);
Loopli(num..rain)

Looplj(length)

uUj][i] = 0.0;

if (type == 0) /***Speaker***/

Loopli(num..rain)
Looplj(length)

A-33



Looplk(length)
tuj~fi] = v~k]bj] *A~k][i] + ub][iI;

else if (type == 1)

Loopli(num-eigvectors)
Looplj(num, train)

Looplk(length)
u[k][i] = vU](i] *A[k](j] + u[kI[iI;

/*******u*Write file containing list of eigenvector names*********/

sprintf(msg, "%a-.train. out", type-.name);
open.-write(outfile, mug);
sprintf(magI, l"eigen~all, type-niame);
Loopli(num-eigvectors)

f

fprintf(outfile, "1s\n", file);

I
fdlose(outfile);

/*********** Write out the eigenbases**************u***************/

open-xead(outflle, mag);
Loopli(num..eigvectors)

f
fscanf(outflle, "%all, &file);
open..write(datflle, file);
Looplj(length)

fclose(datflle);

I
fclase(outfile);

free..matrix(A, 1, length, 1, num..train);
free..matrix(u, 1, length, 1, nnm..train);
if (type == 0)

4remti(,1 egh ,lnt)
free..matrix(L, 1, length, 1, length);

free..vector(d, 1,length);

I

free-.matrix(L, 1 ,nnm-train, 1,num-train);
free..matrix(v,l1,num~train,lI,num~train);

A-34



free.vector(d, 1,num.train);
I

A.6.6 fom.routine.c.

Program: fom-routine.c

Description: The purpose of this program is to allow a comparison
between the eigenvectors with the highest eigenvalues (found during
the KL transformation) and the in-class importance of those eigen-
dimensions when each class is individually projected into the
eigenspace. The program will:

- read in data from a sourcefile containing multiple classes and
multiple data points of some dimension n
- read in an eigenspace defined (via the kit process) from the
raw data points

- calculate the in-dlass and across-class means and variances
of the eigen-dimensions
- calculate a figure of merit (FOM) for each set ofeigen-
dimensions

The program requires a user-specified input data file containing class data. The first three lines of
theo data file must contain the number of classes within the file, the number of vectors per clam, and the
dimensionality of each vector. The listing of vectors, by class, will follow.

The output of the program will be a listing of the above
statistics. The output eigen-dimensions wil be listed in order of
decreasing eigenvalues, and we will be able to make a direct comparison
between the FOMs and those sigenvalues to determine which eigen-dimensions
appear to be most important for the given data set.

Author: John G. Keller

Date: 29 Aug 93

#include <stdio.h>
#include <math.h>
#include <string.h>
#include "nrutil .h"
#include "jkxacroa.h"

fom-routine(char file iista, int type, int num-coefs, int dim, int num-train, int start-classes, int num-protos)

{
char command[40], msg[40], msgl[40], data.llename[40], type-name[30], file[40];

A-35



imt vwcton.pr-aus,
auu-Migpoefe,
Ra~m.agvectors,
aulcl-ames,
aatmitua,
total-vectors,
i, j, k;

gloat tempi,
temp2,
sum..eigvalue,
aum.Iorn,
40om,
*acroea..class-variance,
*acroess-laam-ean,
*mean..vector,
*eigvalue,
*fom..ordered-vector,
*mean-.of-var,
*var..ofmeans,
*fom-.error,
*cum-fom-.error,
*eig-.error,
*cum..eig..error,
**eigeinmatrix,
**fom..ordered..eigmatrix,
**datak matrix,
**newdata matrix,

**dlass-variance,

FILE *datfile, *outfile, *fhandle, *train, *avg-file;

Read in initialization data from source files

open-read(train, file-list);
if (type == 0) /***If speaker verification***/

fscanf(train, "%s", data-ilename);
fscanf(train, "Ud', &num..dasses);
facanf(train, "Ud", &vectors-.per-class);
fscanf(train, "U~", &num-ftrs);
num..eigvectors = num-eigcoefs = num-ftrs;

else if (type == 1) /***If face verification***/

numiftrs = dim *dim;

num..eigvectors =num-eigcoefs = num..train;

A-36



num-.chuases = start-casses;
vectors .per-dcass = num..protoo;

i =0;

strcpy(type..name, fill

while (fileiist[i] 96 ' filelist~i] # '6

if (fileiist[i] f=''I ile.liut[iI =

type..name[i] =0;

break;

type-iameji] = file-iisttil;

total-vectors = num..classes * vectors..per-das;

Declare/initialize matrices and vectors

fain = vector(l, nnm-eigvectors);
across-.class-.variance = vector(1, num-classes);
across .class-mean = vector(l, num-classes);
mean-vector = vector(l, numltrs);
eigvalue = vector(l, num..egvectors);
mean..oLvar = vector(l, num-ftrs);
var-.of..means = vector(l, num-ftrs);
fom..ordered..vector = vector( 1, numltrs);
eig-error = vector(l, num-Itrs);
cnm-eig-.error = vector(l, num.Itrs);
fom..nrror = vector(l, num.Itrs);
cum-Iom..error = vector(l, num-ftrs);

eigenmatrix = matrix(l, num-..igcoefr, 1, num-egvectors);
fom-.ordered..eigmatrix = matrix( 1, num..eigcoefs, 1, num-eigvectars);
data matrix = matrix(l, numitrs, 1, total-vectors);
newdata .matrix = matrix(l, numfitrs, 1, total-vectors);
class-.mean = matrix(l, num-Itrs, 1, num-classes);
class-variance = matrix(l, numltrs, 1, num..classes);
u = matrix(l, numltrs, 1, total-vectors);

Loopli(num-eigcoefs)

f
fom[i] = eigvalue[i] = mean-vector[i] = 0.0;
Looplj(num-.eigvectors)

eigenmatrix~i][j] = 0.0;
Looplj(num..classes)

class-mea~nfiJUI = class-variancefiloil = 0.0;

A-37



Loopli(num-.claaaes)
acroms..claaasariance[i] = acroes-claseanean[i] = 0.0;

Loopli(nuinltrs)

I
mean-vector~i] = mean..ofvar[i] = var-.of-meansfi] = 0.0;
Looplj(tota.lvectors)

data-matrix[i]U] = newdata..matrix[iIV] = 0.0;

KL transform the source data set to form the eigenspace.

find..kspace(datadilename, eigenmatrix, eigvahxe, mean-.vector, dataanatrix, num..clasaes, vectors-per-xlaas,
num.Iftrs, type);

/***Bring the elgenvalue back from lind~lspace in case we want it later***/

Load mean-.vector, eigenmatrix, eigvalue, and data..atrix

Loopli(num..eigvectors)
Looplj(num..eigcoefs)

fom-.ordered-eigmatrixj][i] = eigenmatrixjj[i];

Save the mean vector to the file ......avg.dat for use by the coelfidient
extraction routine (tnetscoeffidients).

if (type == 0)

I
open..write(avgiile, "avg-speaker .dat");

I
else if (type == 1)

I
opet-write(avg-ile, "lavgjface .dat");

Loopli(numlftrs)
fprintf(avgille, "If "1, mean-sector[i]);

fdlose(avg~le);

Calculate newdata-matrix

if (type == 0)

Loopli(total-vectors)
Looplj(num..eigvectors)

A-38



Looplk(numltrs)
newdata maatrixUj][i] += data .matrix[k][i] * eigenmatrix[kI]U;

else if (type= 1

4opittlvcos
Loopl(total-vectors)

Looplk(aumltro)
newdata-.matrix~k]i] += data matrix[k]Lj] *eigenmatrixUj][i];

Calculate class-.mean and dlass-wvriance matrices

Loopli(num-classes)
Looplj(num-Itrs)

I
templ = 0.0;
Looplk(vectors..perdass)

I

clasa..mean~j][i] = temp1/vectors-per-dass;

Loopli(num-cdaases)
Looplj(num-ftrs)

I
temp2 = 0.0;
Looplk('vectors..per-dulas)

temp2 += (newdata...matrixD][k + ((i -1) * vectors-per...cass)] -class-meainj][i]) *(new-

data .matrixU]tk + ((i - 1) * vectors..per.Alass)] - class..meanD]ti]);

I
class..varianceUl[i] = temp2/vectors..per...cass;

Calculate across-ciass-mean matrix

Loopli(num-ftrs)

I
templ = 0.0;
Looplj(num-Aasses)

tempi += class..mean[i]D];
across-class..mean~i] = templ/num-classes;

A-39



Calculate mean..oLvar and var..oLmean vectors

Loopli(num-ftrs)

tep{ =00
temp2 = 0.0;

Loopij(num-classes)

tempi += claaa..variance[i][j];
temp2 += (daass.mean~i]V] - acroess-daaa.mean[i]) *(dlasa..meai~i][j] - acrous..ls-anmean~i]);

mean..otvar~i] = templ/num..classes;
var-.of-means~i] = temp2/nml..classes;

Calculate fom (Figure of Merit) vector

Loopli(num-ltrs)
fom..ordered..vectorfi] =fomfi] = var..ofmeans[i]/nean-.of-var[i];

Reorder tMe eige~nvectors in order of decreasing FoM.

eigsrt(fom..ordered..vector, fom-ordered-egmatrix, num..eigvectors);

/***For testing, print out the eigvalue ordered vector vs the
FOM ordered vector

open-.write(outfile, 'eigvelon. out");
fprintf(outfile, "#\tEigvalue\tFoK Value~tf Ordered FoR\n\n");
Loopli(num-6egvectors)

f
fprintf(outfile, 11%d) \t~f\t~f \t\t~f \n", i, eigvalue[i], fomfi], fom..ordered..vector[i]);

fdose(outfile);

exit(0);

/*e*************e**Find eigenbases~s************s*.*****s*********/

u = matrix(l, num-ftrs, 1, num..coefs);
Loopli(num-coefs)

Looplj(num-ftrs)
UUj][i] = 0.0;

A-40



if (type == 0) /***Sp-eaker***/

Loopli(uum-coefs)
lo~wplj(num..ftrs)

Looplk(num-Itrs)
u~ilfi] = fom-ordered..eigmatrix[k]fj] *data.-natrix~k][i] + uUj][i];

else if (type == 1)
I
Loopli(num..coefs)

Looplj(total-vectors)
Looplk(num-ftrs)

u[k][i] = (fom-ordered-eigmatrixU][i] * data.matrix[k]fj]) + u[k][i];

/*********** Write Mie containing list of eigenvector names*********/

sprintf(msg, "Xs..train. out"1, type-name);
open..write(outfile, mag);
sprintf(msgl, ".igen~ll, type-.name);
Loopli(num eigvectors)

I
sprintf~file, 'X~d.dat", msgl, i);
fpnintf(outflle, "Xs\n", file);

fclose(outfile);

/******************* Write out eigenbasis le***********/

open-read(outflle, msg);
Loopli(num..coefs)

f{
f~scanf(outflle, "Ua", &file);
open..write(datfile, file);

Looplj(num-Itrs)
fprintf(datfile, "Xg\n", u~j][i]);

fclose(datflle);

fclose(outfile);

Free up data structure memory.

free-matrix~u, 1, num-Itrs, 1, num..coefs);
free..vector(fom, 1, num..eigcoefs);
free-vector(across.Aass..yarance, 1, num..classes);
free..vector(across-claass-mean, 1, num-classes);
free-vector(mean-vector, 1, num-ftrs);

free..vector(eigvalue, 1, num-eigvectors);
iree..vector(mean-.of..var, 1, num-ftrs);

A-41



free.vector(var.of-means, 1, num-ftrs);
free.vector(fom.ordered.vector, 1, numitrs);

free.vector(fomeerror, 1, num-ftre);
free.vector(cum-fom.error, 1, nuam-trs);
free-vector(eig.error, 1, num-trs);
free.vector(cum-eig-error, 1, numftrs);

free.matrix(eigenmatrix, 1, num-eigcoe1s, 1, num-eigvectors);
free.matrix(fom-ordered.eigmatrix, 1, num.eigcoefs, 1, num-eigvectors);
free.matrix(data.matrix, 1, num-fitrs, 1, total-vectors);
free-matrix(newdata-matrix, 1, num-ftre, 1, total-vectors);
free-matrix(dassamean, 1, num-eigcoefs, 1, num-clasaes);
free-matrix(chasavatiance, 1, num.eigcoefs, 1, num-clasaes);

A.6.7 find-klspace.c.

Program: fAndklspace.c

Description: This routine is based around the Jacobi rotation routine
found in Numerical Recipes in C, and will calculate the eigenspace associated
with a set of data vectors. Given the vector matrix, it will first calculate
the covariance matrix, and then the eigenvectors. The eigenvector matrix
is then put into descending eigenvalue order r-nd returned to the calling

program. The eigenvectors may also be printed out here by un-commenting
the appropriate lines. The code was written to be used with either face
or speaker data. This routine was written to be used by the program fom.routine.

Author: John G. Keller

Date: 1 Sep 93

#include <stdio.h>
#include <math.h>
#include <string.h>
#include "jknacros.h"

find.klspace(char infilenamea, float **eig.vectors, float *eig.values, float *average-temp, float **data-matrix,
int num.classes, int vectors-per.class, int num-trs, int type)

{

FILE *datfile,
*outfile,
*average,
*infile,
*train,

A-42



*protohile;

imt ij, N, k, M,
Dxot,
num..trAin;

Bioat **matrix(),
*vectoro,
*edata..matrix-.trans,

temp;

void free..vector(),
free-matrixo,

eigsrto,
jacobio;

char file[40],
filename[40];

if (type == 0)
I
open-.read(datfile, inhilenazne);

num..train = nnm..dmes * vectorus.per-.caas;

/****** Allocate memory .'.****/

data.matrix..trans = matrix(1,num..train,I,uumltrs);

if (type == 1) /e***If face verification***/

L = matrix(l, num-train, 1, num..train);

else if (type == 0) /.***ff voice verification***/

L = matrix(l, num-Itrs, 1, numiftra);

/s* n*litalise matrix and vectors **/

if (type == 1) /***Ifface verihication*s*/

I
Loopli(num..train)

I
Looplj(num-ftrs)

data...iatrix-transfi]fj] = data-.matrixUj][i] =0.0;

open-read(train, "lfacejlist");
Loopli(uum-Aasses * vectors-per..clann)

A-43



open-aead(protofile, filename)
Looplj(num.Itxs)

Iscauf(protoflle, "U", &data...zatrix~fj]ifl;

idose(protoflle);

idoee(train);

else if (type == 0) /***If voice veriication***/

Loopli(num...raia)

Looplj(num..ftre)
data.-natrix-transi]Lj1 = data..matrixUj][i] =0.0;

Loopli(num..train)
Looplj(num.Itrs)

fscanf(datfile, "U",, &data-natrixj](i]);
fclose(datfile);

/***p********s.**Calculate average vco~~ss*.s.as

Loopli(nnm-ftrs)

temp = 0.0;
Looplj(nomm.train)

I
temp += data..matrix~i]CjJ;

average..temp[i] = temp/nmm.train;

I

/a******~***ss**Subtract average vector*******************s*s*/

Looplj(nnm.Arain)
Loopli(num-ftrs)

data inatrix[i]Uj] = data-.matrix~i][j] - average..temp[i];

/.************Make transposemairsssass*asss/

Looplj(num..train)
Loopli(num-ftre)

data...matrix-.transj][iI = data. natrix[i]U];

/*ss******s**s**sss *Matrix multiply data-matrix by itaelf**s**s*s**ss*/**

if (type == 1) /s**sIf face verification***/

A-44



Loopli(num-train)
Looplj(nuu...rain)

I
temp = 0.0;
Looplk(num-Itrs)

temp = temp + data-.matrix.transfi][k] data..matri*]k][j;
Lri](j] = temp;

else if (type == 0) /a**If speaker verification***/

I
Loopli(num-Itre)

Looplj(num..ftre)
I
temp = 0.0;
Looplk(num..train)

temp = temp + data..matrix-trans[k][i] data-anatrixi][k];
Lri]D] = temp;

free..matrix(data..matrix..trans, 1, num..rain, 1, num..ftrs);

/***********s****Do Jacobi rotation and sort eigenstuf.***a******/

if (type == 1) /a**If face verification***/

f
jacobi(L, num..train, eig..values, eig..vectors, &nrot);
eigert(eig..values, eig..vectors, num.Arain);

else if (type == 0) /***If voice verification***/

jacobi(L, num-ftrs, eig..values, eig-vectors, &nrot);
eigsrt(eig..values, eig..vectors, num-ftrs);
I

if (type == 1)
free-matrix(L, l,num..train,l,num..rain);

else if (type == 0)
free..matrix(L, 1 ,num-itrs,l,num-ftrs);

/e***Can print out eigenvectors if desired by uncommenting here

open-.write(outffie, ou tfdlename);
fprintf(outfdle, "%d'\n", num..ftrs);
Loopli(num-ftrs)

I
lprintf(outfile, "%f ", average-temp[iJ);

Loopli(num..ftrs)

A-45



fprintf(outfile, "\nA1n", eig.values~i]);
Looplj(num-ftrs)

fprintf(outfile, "%f ", eig..vectorsojffij]);
fdose(outfile);
***End of print eigenvector section****/

free.vector(average-temp, 1, numJtrs);

)

A.6.8 verify-ace-net.c.

Program: verify-face.net.c

Description: This program performs face recognition. The program grabs an image of the person sitting
in front of the camera, processes that image, extracts the KLTcoeffcients and finds the closest match from
the faces in the training set.

Author: Kenneth Runyon

Date: 8 July 92 - 31 Aug 92

Modified by: John G. Keller

Date: 1 Sep 93

Modification Description: Added capability for accepting command line arguments. Added command
line option for specifying use of the net built for the nonlinear transformation for testing here.

#include <stdio.h>
#inndude "vfc-lib.h"
#include "jkuacros.h"
#include "globals .h"

#define NUM-LAYRS 2
#define WTSED 1918940490
#define PART.SED 1191645590
#define RNDM.SED 123456789
#define MAX!TS 600
#define OUTINT 100
#define ETA-IN 0.15
#define ETA.OUT 0.3
#define ETA.-12 0.0
#define ALPHA 0.5
#define BAT.SZ I
#define TRAINYPCT 0.0
#define NORM I

int dimension, j,

num.coefs,
num-train-faces,

A-46



done,
num-protos,
happy,

-d~cams;

FILE *fpararn,
*fhandle,
*fweights,
*fset,
*ftable;

char wtifile[1O],
dat-file[1O],
hid-.nodes,
hid jiodes2,
usernazne[30],
userl(30],
answer[4],
waste[2];

#define TRUE I
#deine FALSE 0

extern void centero;
extern void gwindo;
extern void ver-let-coefficientsaO;

main(int argc, char *argvfl)

I
FILE *vprob, *fprob, *nonlindata;

char command[30],
user[30];

float yesprob,
yesoutput,
nooutput,
sum,
yesvoice,
novoice,
yesvoiceprob,
fusedprob,
flwaste;

int i,
PROCESS,
NONLIN,
arg-count,
USE-FILE,
type,

A-47



num-.not-person,
SAME,
iit-waste;

#define SYNTAX "Usage: verityfy.ace-net <claimed identity>\n ['filename) 1[noproceas] (

if (argc =1

printf(11\n~s\zx", SYNTAX);
exit(O);

PROCESS = TRUE;
NONLIN = FALSE;
USE-FILE = FALSE;
arg-.count = argc - 1;

if (a~rg.connt =)

i
PROCESS = TRUE;
NONLIN = FALSE;

if (arg-count == 2)

{
if (strcmp(argv[2], "noproceso") ==0)

PROCESS = FALSE;
NONLIN = FALSE;

else if (strcmp(argv[2], "nonlin") == 0)
I
PROCESS = TRUE;
NONLIN = TRUE;

else if (fopen(argv[2], "r'") == NULL)
f
printf("\nCan 't open the f ile %a. \n", argv[2]);
exit(0);

else USE-FILE = TRUE;

if (arg..count == 3)

if ((strcmp(argv[2], "noproceas') == 0) 11 (strcmap(argv[3], "noprocess") ==0))

PROCESS = FALSE;

if ((strcxnp(argv[2], "nonlin") == 0) 11 (strcmnp(argv[3], "nonlin") ==0))

NONLIN = TRUE;

A-48



if ((fopen(argv[2], "r,") == NULL) && (fopen(argvjj3], "r") == NULL) && ((PROCESS == TRUE)
11(NONLIN == FALSE)))

printf("\nCan't open either %a or %9. Make sure you're using the proper syntax. Wns",
argv[2], argv[3], SYNTAX);

exit(O);

if ((PROCESS == FALSE &&z NONLIN ==FALSE) II(PROCESS ==TRUE &&NONLIN =

TRUE))

f
USE-FILE = TRUE;

if (arg-count == 4)

f
PROCESS = FALSE;
NONLIN = TRUE;
USE-.FILE =TRUE;
if (fopen(argv[2], '"r") == NULL)

f
printf("\nCan't open file %s. \n", argv[2]);
exit(O);

sprintf(user, "Xs-f klt .vts", argv[1]);

if ((ftable = fopen(user, "1r")) == NULL)

f
printf("\nI can'It open the f ile Xs-.f-.klt. vts. \n", argv~lj);
exit(O);

else
fclose(ftable);

* read the parameters from trairi-params file

open..xead(fparam, "train..L-paranas");
fscanf(fparam, "Xd",&dimension);
fscanf(fparam, "Zd" ,&num..coefs);
fscanf(fparam,"ld" ,&num..train-faces);
fscanf(fparaxn, 'd" ,&num..protos);
fscanf(fparam, 'Id",&num-class);
fclose(fparam);

/**********Create the setup file for the neural network*****/

A-49



sprintf(wt-Me, "Xs-f -klt its", argv~l]);
strcpy(datJile, "klt..f .dat ");
hid-.nodes = 2 * num-.coefs;
hid..nodes2 = 0;

fset = fopen("'setup. usp"1 ,W"o);
fprintf
(fset, "Zd\n~d\n~d\ji~dkn~s -store weights\nld\n" ,NUM-LAYRS,WT-SED,PART.SED,RNDM..SED,wt-flt
MAXIJTS);
fprintf(fset,"Xd %d %d %d\n" ,num-coefs,hid-aiodes,hid-iodes2,num..class);
fprintf(fset,"Xs -data\n~d\n~f\n~f\nU~nf\n~d\n~f\n~d\n",
dat-ile,OUTJNT,ETA-IN,ETA.OUT,ETAJ...2,ALPHA,BAT.SZ,TRAINYPCT,NORM);
fclose(fset);

Either use an existing image file or grab a new one. Can either grab
a single image or use the segmentation algorithm.

if (fopen("luser.gra", "1r") #6 NULL) system("ra user.gra");
happy =0;
if (USE-FILE == TRUE)

f
sprintf(command, "1cp %s user.gra"l, argv[2]);
system(command);

else
f
while (!happy)

I
autograb(Iluserl");
sprintf(command, "display~d user. gra stay", SM-WIDTH);
system(command);
printf("\nls the picture satisfactory (yin)? ");

gets(answer);
if ((answer(O] == 'y') 11(answer[0] == Y)

break;

if (PROCESS == TRUE)

center(dimension, "correlate. ref ", "user. gra"l);
gwind(dimension, "user. gra");
center(dimension, "wind. ref to,"user. pra"l);

A-50



/*.*create the data file and store the ki coeffidcents.*.******/*

open-write(ftable, "waste");
open..write(fweights, "'kit....dat");

fpriutf(fweights,"Zd\n~d\n" ,num-coefs,num-l.Aas);
aprintf(user, "user. grae");

type = 1;
if (NONLIN == FALSE)

face-net-coefficients(dimension, num..coels, user, fweights, ftable, num-class, type, type);

else
face..net..coefficients(dimension, num-train-faces, user, iweights, ftable, num-dcass, type, type);

fclose(fweights);

if (NONLIN == TRUE)

I
open..read(fweights, "lkit..!.dat");
open..write(nonlindata., "If acetest .dat"l);
fprintf(nonlindata, "%d\n1\n1\VI", num..train-Ia~ces);
Loopli(3)

fscanf(fweights, "1Zd", &int..waste);
Looplj(nunx.train-faces) /***Num of feat ures.***/

I
fscanf(fweights, "%f "1, &fi..waste);
fprintf(nonlindata, "II! ", flwaste);

fdose(fweights);
fclose(nonlindata);
system(I "z eatures facetet. .dat");
open..read(nonlindata, "nevtest .dat");
open..write(fweights, "lkit... .dat");
fscanf(nonlindata, "%d "1, &int..waste);

fprintf(fweights, "12\n2\nO")
Loop' i(num-.coefs)

fscanf(nonlindata, "1! , &flwaste);
fprintf(fweights, "IIf ", L1waste);

I
fprintf(fweights, "10. 90000 0. 10000\n");

fclose(nonlindata);
fclose(fweights);

/***find the best matching training face***/

#ifdef RESULTS
system( "alp...!use-f. ile");

/******fuselist.c has the other file writing stuff. The actual net

A-51



*******outputs are written to the Wie 'face-prob' by dkmain.c comn-
****e***piled as

#else
system(u'lpjtuse');

#endif

/****s**If not writing to a file, output to the scaeen.********s***~**1

#ifndef RESULTS
j= 0;

whfle(argv[2][I 96 '\01)

I
if (isalpha(argv[2][j]))

else
argv[2]Uj] = 0;

if (strcmp(argv[l], argv[2]) ==0)

SAME = TRUE;
else

SAME = FALSE;

open-.read(fprob, 'node-out '9;
fiscanf~fprob, "Z:f~f 1, &yesoutput, &nooutput);
fdose(fprob);
num..not-person = (num..train-faces/numn.protos) - 1;
yesprob = (yesoutput * (num-not..person/10))/((yesoutput *num-.not-.person/2~0) + n~Output *0.5);

printf("\n\nThe post-probability based on face that this is %s is %f. \n\n", argv[1], yesprob);

if (SAME == TRUE)
printf("\nClaiued ID is true ID.- Verif ication probability is %f \n", yesprob);

else if (SAME == FALSE)
printf("\nlposter. Verif ication. probability is %f \n", yesprob);

open-.write(fprob, "f ace..prob");
fprintf(fprob, 11%f"1, yesprob);
fclose(fprob);

#endif

/***remove trash files ****

/*system("rm test..coefs");
if (fopeu("*.rle", "r"):0 NULL) system("rm *.rle");
if (fopen("*.red", "r") 0 NULL) system("rm *.red");
if (Ibpen("*.recD, "r") #6 NULL) system("rm *.rec"); ~

A-52



if (fopen("waste", "r") 0 NULL) system("ra waste');

}

A.6.9 verify-voice-net.c.

Program: verify.voice-net.c

Description: This routine is based on verify-face-net, written by Ken Runyon. It verifies the identity of
a speaker via a file, and can be modified to capture a speaker's voice live. It also maintains the capability
of concatenating raw speaker cepstral vectors (to retain temporal information) or using codebook vectors
for verification.

Author: John G. Keller

Date: I Sep 93

#include <stdio.h>
#include "v-fc_lib.h"
#include "jkzacros.h"
#include "globals.h"

#define NUM.LAYRS 2
#define WT.SED 1918940490
#define PARTSED 1191645590
#define RNDM.SED 123456789
#define MAXITS 1000
#define OUT-INT 100
#define ETA-IN 0.15
#define ETA-OUT 0.3
#define ETA.12 0.0
#define ALPHA 0.5
#define BAT-SZ 1
#define TRAINPCT 0.0
#define NORM 1

int length, j,
num-coefs,
num.speaker.vectors,
done,

num-protos,
happy,
num-in.chunk,
num-chunks,
num-class,
total-num-coefs,
num.not-person,
temp;

FILE .fparam,
*fhandle,

A-53



*fweights,
*feet,
*ftable,
*handle,
*1dat,
*fdat2;

cha~r wtiile[10],
dat-file[lO],
hid-.nodes,
hid..nodes2,
username[30],
userl[30],
answer(4],
waste(2];

float finumber, tempi, temp2;

#dei.ne TRUE 1
#define FALSE 0

mai~n(int a~rgc, char *argvfl)
f
FILE *vprob, *prob, *nonlindata;

char commandf 303,
useif 30];

float yesprob,
yesoutput,
nooutput,
fusedprob,
R-waste;

int i,
USE-FILE,
SAME,
NONLIN,
int..waste;

#define SYNTAX "Usage: verify-.voice-.net (claimed identity> Pf ilenaime' I ['nonlin I \n"

if (argc == 11 argc > 4)

f
printfC1\nus\n11, SYNTAX);

exit(0);

USE-FILE = FALSE;

if (argc == 3 IIargc == 4)
USE-FILE - 1 UE;

A-54



if (argc ==4)

NONLIN = TRUE;

sprintf(user, "las-.a.klt .uta", argv[1]);
open-.read(ftable, user);

Either use an existing speaker file or grab a new one.

/***If verifying from file, copy file to 'user.speech' ***/

if (USE-.FILE == TRUE)

spnintf(command, "1cp %s user. speech", argv[2]);
system(command);

else

/e**insert speaker capture routines here. Put resultant speech in
user.speech**a/

* read the parameters from train..a-params file

opeu..read(fparam, "train...s.params");
fscaatf(fparam,"Vd", &nnm..coefs);
fscanf(fparam,"1d",&num...cass);
ficanf(fparam, "1d", &num-in..chunk);
fscanf(fparazn, "%d", &num-not-person);
fclose(fparani);

open..read(fi~andle, "user. speech");
fscauf(flnandle, "Id", &num..protoe);
fscanf(fhandle,"Id",&length);
rewind(fhandle);

/****** create the data file and store the ki coeffiidents**********/

open-write(fweights, "kit .dat");

fpriutf(fweig,, ý3, "Vd\n~d\n",num-coefs,numcla~ss);
sprintf(user, "user. speech");
if (NONLIN 0 TRUE)

voice-iet-coefficients(Iength, num..coefs, fweigbts, fhandle, num..class, num-protos);
else

voice-net-.coefficients(length, length, fweights, fhandle, num-class, num-protos);
fcloee(fweights);
system("ra user. speech");

A-55



We now have the klt.dat file containing all the sets of kit coeffcients
for this user. We next will rewrite the klt.dat file to represent
concatenated 'chunks' of vectors. A chunk of '1'will be a&single &&ame's
coefficients.

num..cunks = (iut) (num..protae/nnm..in.chunk);
total-num..coefs = num..in..chunk * num..coefs;
open..read(fweights, "kit .dat");
open..write(handle, "tmup-dat");

facanf(fweights, "%d"', &temp);
fprintf(handle, "1d\n",, total pum.coeIb);
fscanf(fweighta, "U4", &temp);
fprintf(handle, "Id\n", temp);

Loopli(suunichunks)

fprintf(handle, "%d ", i - 1);
Looplj(total-num..coefs)

I
fncanf(fweights, "U", &Anumber);
fprintf(haadle, "1U "o, finumber);

fprintf(handle, "10.10000 0. 10000\n");

Iclose(haadle);
fcloseffweights);
system("uwv temp.dat klt-.s.datll);

if (NONLIN == TRUE)

I
open..read~fweighta, "~klt.s .dat");
open-.write(nonlindata, "apkrtest .dat");
fprintf(uonlindata, "1d\R1\n164\n", length)
Loopli(3)

fncaaf~fweights, "%d"', &int..waste);
Looplj(leugth) /***Num of feat ures***/

f
fscanf(fweights, "U: "1, &l-wate);
iprintf(nonlindata, "IU ", flwaste);

fclose(fweights);
fcloee(nonlindata);
system("zfeatures spkrtest .dat");
open-xead(nonlindata, "neutest .dat");
open..write(fweights, "lklt.s .dat");
fscanf(nonlindata, "%d ", &int..waste);
fprintf(fweights, "2\n2n");

A-56



Looplj(64)

I
fpriatf(fweighta "24 ", - 1);
Loopli(num-.coefs)

I
iacanf(sonlindata, "If ",&Lfiwaste);
fprintf(fweights, "21 ", fiwaste);

fpuintf(fwveights, 110.9000o 0. 10000\n");

fdose(nuolindata);
fdlose(fweights);

/*..**a.*.*Create the setup file for the neural network *.s*/

sprintf(wtiile, "2~s....klt .uta", argv[I]);
strcpy(datJiLe,"klt..s .dat");
hid-nodes = 2 * totaL-num..coefs;
hid-iodes2 = 0;

foet = fbpen("ae~tMP.InlP",fI");
fprintf
(fset, "104\nUd\,ad\n24\nUs -store weights\ZiZ~",NUM-LAYRS,WT-SED,PART-SED,RNDM.SED,wtil.
MAXJTS);
fPnintf(fset,"1d 2d 24 ld\n",totalnnm-coes,hid-nodes,hid..nodes2,num-claa);
fPnintf(faet,fIs -data\nUd\nu\nll\u\n21\D1\nUd\nh\nld\n",
dat-file,OUTJNT,ETAIN,TA..OUT,ETA-i2,ALPHA,BAT..SZ,TPL4INyPji NORM);
fcose(fiset);

/.***e* find the best matching training speaker a~*

if (fopen("'node..out", 'or'$) 9f NULL) system("r. node-.out");

#ifdef RESULTS
system("KmPlp..Tejfile");

/e*****fuselist.c has the other file writing stuff. The actual net
*******outputs are written to the file 'face..prob' by dkmain.c comn-
*******piled as

#else
system(fivapjtuse"f);

#endif

/******If not writing to a file, output to the screen*s*****ss******/*

#ifndef RESULTS
j=0;
while(argv[2][jlA 1 \0')

A-57



if (isalpha(&rgv[2]Lj]))

else
argv(2]U]j = 0;

if (atricmp(argir[l], argv[2]) == 0)
SAME = TRUE;

else
SAME = FALSE;

open..ead(vprob, "node..out");
sprintf(command, "IsUprob .dat", argv[l]);
if (SAME == TRUE) open..write(prob, command);
templ = temp2 = 0.0;
Loopli(num..chunks)

I
Iscanf(vprob, '111*' 1, &yesoutput, &noontput);

if (SAME == TRUE) fprintf(prob, '1f\n", (yesontpnt *(num..not..person/2.0))/((yesoutput *num..not..person/2.0)

+ nooutput * 0.5));
templ += ( yesoutput * (num..not..person/2.0))/((yesoutpnt * num..not..person/ 2.0) + nooutput * 0.5);
temp2 += 1.0 - ( yesoutput * (num..aot..peron/2.0))/((yeaoutput * num..not..person/2.O) + nooutput

*0.5);

Icloee(vprob);
if (SAME == TRUE) fdoee(prob);
yesprob = templ/(templ + temp2);
printf("\jiThe post-probability based on voice that this is %a is %f . \n\n", argv[1],yesprob);
open..write(vprob, "voice-.prob");
fprintf(vprob, "Zf 1, yesprob);
fclose(vprob);

#endif

/***remove trash files ****

if (fopen(I"uaste", fir") 96 NULL) system(I"ra waste");

A .6.10 verify-.identity.c.

Program: verify-identity-c

Description: This program will invoke, in turn, the face verifier and the speaker verifier, and will then
fuse the results.

Author: John G. Keller

Date: I Sep 93

#indudeczstdio.h>

A-58



#include 'jkuacros ii"

main(int a~rgc, char *arg'vrf)

I
imt i;

float faceprob,
voiceprob,
identprob;

char command[30];

FILE *fhandle,

if (argc < 211 argc == 3)
1
Printf("\nSYNThX: verif y-.identity <claimed username> [<f ace f ile><voice f ile)J \n\n");
exit(O);

if (argc == 2) /***eCapture face and voice live***/

sPrintf(command, "verify..face..net %all, argv[l]);
system(command);
sprintf(command, 16yerif Y-.voice-net %all, argv[l]);
system (comnmand);

else

1******aesure the filesexs***e******/

open..read(fliandle, argv[2]);
opeu-read(fhandle, argv[3]);
sprintf(command, "verify..face-net U %all, argv[l], argv[2]);
system(command);
sprintf(command, "'verif y-.voico-.net %a %all, argvfi], argv[3]);
system(command);

Get the face and voice probabilities resultant from running the
individual verifiers. Fuse those probabilities.

open..read(fliandle, "f ace-prob");
fecanf(fhandle, "If ", &faceprob);
fclose(fhandle);
open..read(fhandle, "voice-.prob");
fscanf(fhandle, "Uf", &voiceprob);
fclose(fhandle);

open-write(fhandle, "ident..prob");

A-59



for (i = 0;i < 10;i++)

I
identprob = 0.1 * i * ia~ceprob + (1 - (0.1 * i)) * voiceprob;
fprintf(fhandle, ,%f 1f\n\tlf \n",(0.l * i), 1 - (0.1 * i), identprob);
printf("Probability of verified identity based on %d%% face and %d%% voice %f f\n", 10

10 *(10 - i), identprob);

fclose(fhandle);

A.6.11 xnetptwh.c.

Program: xnetpush.c

Descrition: hin pr gram p rforms a non-inear ransfrm ation on multiple d ie fi p t v cos
The eigt u d it rul ca se the tr Bfr e d se to be pu Id apart from each other, withteit n
omo ingtedasses inoardcdadmReserable spac than teone in whichybgn h

eihsare saved tafiaarthfnl outpt fro the ne.Teeotputs are aloputinomtpl
files for plotting by Gnuplot.

Author: John G. Keller

Date: 15 Oct 93

#indlude<stdio.h>
#include<stdlibii>
#inclnde<string.h>
#include<math.h>

#include "jkmacroa .h"

#define epoch 10

/*****Decare global variables and functions.***n**a*** n/*

1st num..prototypes,
num..classes,

num-features,
num-.out-nodes,

num..hidden..nodes,
output-.type;

float **data-.iatrix,
**weight12,

**weight23,
*tempiiidden..outi,
*temp-hidden..out2,
*temp..outl,
*temp..out2;

float *vectorO, **matrixo, free-vectoro, free-.natrixo, ranlO);

A-60



/*****.*s*******Begin main porm********

main(int a~rgc, char *argvG)
I
int ij,k, 1,m, n,

max-iterations,
temp,
random..pickl,
ra~ndom-.pick2,
random-seed,
EXIT-SWITCH,
OUT-OF..CLASS,
max-vectors[5],
duasl,
claa2;

float

**new..data..matrix,
*hidden-node-.out,
*delta-out,
*delta-hidden,
*temp-total-dist,
*sun-welght-out,
*mean-feature,
*variance-feature,
*delta.outl,
*delta.out2,
*diff..out,
*sum-out-deltal,
*sum-.out-delta2,
*deltalxidden-outl,
*deltaiiidden-out2,

etain,
eta-.out,
tempi,
templioldi,
temp-hold2,
temp-hold,
sum..diff-out,
norm-factor,
total-error,
min-.distance,
scale-factor,
min-dist,
**desired,
*sum..41ff,
sum-weight;

char command[30];

A-61



FILE *netinfo, *data, *weightfile, *fhandle, *error-out, *error-in, *newtest;

if (argc y0 2)

1
printf("\nSYTAXk: trainxnetbatch <dataf ile naae>\nxi");
exit(O);

open-read(netinfo, "bpaot .dat");
fscanf(netinfo, 'ld\n~d\nU2\n~f\nUd\nUd\nU", &num-.out..nodes, &numiiidden..nodes, &eta-in, &eta-out,
&max..iterations, &random..seed, &output-type);
fclae(netinfo);

random-seed = - random-waed;
open-.read(data, argv[l]);
fscanf(data, 'iU\nUd\nld\z", &nnm-features, &num-.classes, &num..prototypes);

numiiidden-aiodes++;
nnm-features += 1; /***Accounat for augmentation***/

Declare and initialize matrices and vectors.

hidden..node-out = vector(l, num..hidden-nodes);
sum..weight-out = vector(l, numiiidden-nodes);
temp-.total-dist = vector(l, num-out.nodes);
mean-feature = vector(l, num-features);
variance-feature = vector(1, num-features);
delta.outl = vector(l, num..out-nodes);
delta.out2 = vector(l, num..out..nodes);
diff-out = vector(l, num..out..nodes);
sum-.out..deltal = vector(I, numJiidden-nodes);
sum-.out-delta2 = vector(l, num-hidden-nodes);
delta-hidden..outl = vector(l, numiiidden..nodes);
delta-hidden-out2 = vector(l, numiiidden-aiodes);

weig~ht12 = matrix(l, numiihidden..uodea, 1, num-features);
weight23 = matrix(l, num-out-nodes, 1, num..hidden-iodes);
data-maatrix = matrix(l, num-features, 1, (num..prototypes * num..classes));
temp..outl = vector(1, num-out..no,ýes);
temp..out2 = vector(l, num-out..nodes);
temp..hidden-G.utl = vector(l, numiiidden..nodes);
temp-hidden..out2 = vector(l, numiiidden-.nodes);

Load all the data into a single matrix. Will be able to extract specific
clasw vectors later by keeping track of the indices.

A-62



Loopli(num-prototypes * numsclasses)

f
Looplj(num-features - 1)

fscanf(data, "U", &datjk matrixW[ji]);
data.matrix[numleatures][i] = 1.0;/***Augment each vector with l.0***/
}

************************* ****** *** ** ***** *** ** ********** ***** ** ****

Normalize a the data across the features.

normalize(data-matrix, mean-eature, variancelfeature);

printf("random.seed = %d\n', random.seed);

Initialize net weights. 'ranl' is a Numerical Recipes routine that returns

a random float between 0.0 and 1.0.

Looplij(numihidden.nodes, numlfeatures)

I
weightl2[i][j] = 1.0 * (ranl(&random-seed) - 0.5);I

Looplij(num.out.nodes, num.-hiddenanodes)

I
weight23[i]Uj] = 1.0 * (ranl(&random-seed) - 0.5);I

/*********open file for writing output error**********/

opentwrite(error-in, "error. inclass");
opentwrite(error.out, "error. outclass");

This is the start of the main loop. Loop until we exceed m iterations.

m = 0;

while (m < max-iterations)
{

Randomly pick two vectors from the data set and determine to which
classes they belong. If they are in the same clais, we wish to push

the outputs together; if they're in different classes, we wish to
push the outputs apart. Set the variable "OUT-OF-CLASS' to indicate same

or different classes.

A-63



random-picki = (int)(ranl(&random..seed) * num-prototypes * num-classes);

while (random..pickl ==0) random..pickl = (int)(ranl(&random-seed) * num-prototypes * num-classes),

classl = random..pickl/num-prototypes +- 1;
label:

random..pick2 = (int)(ranl(&random..seed) * num-prototypes * num-classes);

while (random-pick2 == 0) random-pick2 = (int)(ranl(&random..seed) *num-prototypes * num-classes);

class2 = random..pick2/num-prototypes + 1;

if (m < max-iterations/4 11m > 3 * max-iterations/4)

if (dlansi == class2) goto laisel;

else
if (dlassl 96 class2) goto label;

/********** Compa~re the two classes and set the fiag******s*********/

if (classi == dlass2) OUT-DF..CLASS = 0;
else OU'L.OF-.CLASS =1

Loop once through net for each vector. Save the outputs of each node

for later calculation of the new weights.

/**First compute the hidden layer outputs for each vector***/

computeJiidden-.nodes(data-matrix, weight12, num-hidden..nodes, random..pickl, tempiiidden-outl);,
computetiudden..nodes(data..matnix, weightl2, num-iudden..nodes, random..pick2, temp-iudden..out2);

/**********Now compute the output nodes**************/

compute..output-.nodes(weight23, tempixidden-outl, temp-outI, num..out-aiodes, numiiidden-nodes,
output-type);

compute..output-aiodes(weight23, tempiiidden-out2, temp..out2, num-out-nodes, num-hidden-nodes,
output-type);

templ = 0.0;
Loopli(num-out-nodes)

tempi += sqr(temp..outl[i] - temp-out2[i]);

if (OUT..DF.CLASS == 1) fprintf(error-out, "%f \n", sqrt(templ));
else if (OUT..OF.AJLASS == 0) fprintf(error-in, "%f \n", sqrt(templ));

A-64



/********************** Update thewegt**********s*s/

/******Buldsome terms for use by the update rule******s*****/

Loopli(num-out..nodes)

4et-uli epot~]*(I-tm-uii)
delta..out2[i] = temp-.out2[i] * ( 1 - temp-outl[i]);
diftf-out2[i] = temp..outlti] - ( tm-outemp[i] []

Loopli(nnm...idden-iodes)

sum-out-deltal[i] =sum-.out..delta2(i] = 0.0;
Looplj(num..out-nodes)

I
sum-.out..deltal[i] += diff-outoj] * weight23b~][i] * delta-outlID];
sum-.out-delta2[i] += diff..outUj] * weight23[j][i] * delta.out2[j];
delta-hidden..outl[iI = temp..idden-out1[i] * (1I - tempiiidden..outl[iI);
delta.Jiidden-out2[i] = temp-hidden..aut2[i] * (1I - temp-hidden..out2[i]);

/***********First update the output layer weights****a****/*

Loopli(num..idden..nodes)
Looplj(num-out-nodes)

I
if (OUT-OF-CLASS == 1)

I
weight23U][i] += eta-.out * diff..outfj] *(delta..outlIU] * tempiiidden-outl~i] - delta..out2Uj]

tempiiidden-out2[i]);

else if (OUT-OF-CLASS == 0)

I
weight23[i][i] ,= eta-onut * diff-outb] *(delta..outlb] * temp-hidden-outl[i] delta.out2fj]*

tempiiidden..out2fi]);

/***a********Then update the hidden layer weights*************a*/

Loopli(num-features)

I
Looplj(xrnm..idden-iodes)

I
if (OUT-OF-.CLASS == 1)

A-65



weightl2jj][i] += eta-in * sum..out-deltalUjl * delta.Jiiddeu..outIb] *data matrix[iI[random..pickll
- sum..outdelta2IjI * delta.Jiidden-out2b] * data-matrix[i][random-pick2];

I

weightl2[j][i] -= eta-in * sum..out-deltalIj] * delta-hidden-.outlD] *data..matrix[iJ(random..pickl]

- sum..out-delta2[j] * deltaiiidden..out2V] *data-matrix~i][random-pick2I;

if (in> max-iterations) break;

fclose(error-in);
fclose(error..out);

Save the weights to a file.

open-write(newtest, "newtest .dat");
Looplk(num..prototypes * num-classes)

f
/********** Compute the output of the hidden nodes***i****e****/

compute..hidden-iodes(data..matrix, weightl2, numiiidden-xodes, k, temp..hidden-outl);

/e******ee*Now compute the output nodes*s*********e*/*

compute..output-nodes(weight23, temp-hidden-outl, temp..out 1, num-out-iodes, numiiidden..nodes,
output~ype);

Loopli(num..out-nodes)

I
fprintf(newtest, "sf "1, temp-.outl~i]);

fprintf(newtest, "\n");

fclose(newtest);
open-write(weightfile, "lbpnet . ts");
fprintf(weightfile, "Zd\n~d\n~d\n~d\n", num-features, num-hidden-iodes, num-out-nodes, output-type);
Loopli(num-features - 1)

fprintf(weightfile, "lf \n~f \n", mean-feature[i], variance-feature[i]);
Loopli(nur- -hidden-nodes)

I
Looplj(numleatures)
fprintf(weightflle, "%f "1, weight2[ilu]);
fprintf(weightfile, "An");

Loopli(num-out-nodes)

Loopl~j(num-hidden..nodes)

A-66



fprintf(weightfile, 'If ", weight23[i]Ifl);

iprintf(weightfile, 'An");

fclose(weightfile);

printf("\jiTo~tal epochs: Xd\n\n', in);

sprintf(command, "xfoatures %all, argv[1]);
/i.**system(command);***/
sprintf(command, 'piudata neutest .dat %d", num-classes);
system(command);

Free memory from matrices and ý,-ctors.

free..vector(hidden..node-out, 1, numiiidden..nodes);
free-vector(sum..weight-out, 1, num..hidden..nodes);
free-vector(temp-.total-dist, 1, num..out..nodes);
free..vector(mean-feature, 1, numleatures);
free-vector(variance-feature, 1, num-features);
free..vector(delta.outl, 1, num..out-.nodes);
free..vector(delta.out2, 1, num-out..nodes);
free-.vector(deltaiiidden..outi, 1, num..hidden-.nodes);
free..vector(delta..hidden..out2, 1, num..hidden-nodes);
free-.vector(diff-out, 1, num-.out..nodes);
free..vector(sum-.out-deltal, 1, numniiddeunaodes);
free..vector(sum..out..delta2, 1, nurn-iidden-nodes);

free-.matrix(weightl2, 1, num..idden-.nodes, 1, num-features);
free..matrix(weight23, 1, num..out..nodes, 1, num..hidden..nodes);
free-.matrix(data matrix, 1, (num..prototypes * num-.classes), 1, num-features);
free-matrix(temp..outl, 1, num-.out..nodes);
free-.matrix(temp..out2, 1, num-out-nodes);
free-matrix(temp..hidden..outl, 1, numiiidden..nodes);
free-anatrix(tempiiidden..out2, 1, num-Itidden-.nodes);

normalize~float **data..matrix, float *meanleature, float *variance-feature)

int ij;

float sum,
*sum-features,
*sum-var;

FILE *fhandle;

s u m -fe a t u r e s = v e c t o r ( l, n u m -fe a t u r e s ) ; A 6



sum..var = vector(l, numleatures);

Loopli(num-Ieatures - 1)

f
sumleatures~i] = 0.0;
Looplj(num..prototypes * num-classes)

f
sum.Ieatures[11 += data-matrixtil~j];

Loopli(numleatures - 1)
mean.Ieature[i] = sum-features~i]/(num-prototypes * num-.clasaes);

Loopli(numleatures - 1)

f
sum..var~i] = 0.0;
Looplj(num..prototypes * num-.dasses)

f
sum-var~i] +=sqr(data-matrix[illh] - mean-feature~il);

Loopli(num.Ieatures - 1)
vaia~nceleatureli] = .um~varliI/(num-prototypes * num-classs);

Loopli(numleatures - 1)

Looplj(num-prototypes * num-classes)

datik matrix~ilb] = (data-.matrix[i][j] - mean-feature[i])/variance-feature[i];
open-write(fhandle, 'noraf il. .dat ");

Loopli(num..prototypes * num-clawss)

I
Looplj(num-features - 1)
fprintf(fhandle, "%f 11, data..matrixUj](i]);
fprintf(fhandle, 'An");

fclose(fliandle);

free..vector(sum.Ieatures, 1, numleatures);
free-.vector(sum..yar, 1, numleatures);

compute..hidden..nodes(float **data...xatrix, float **weightl2, int numiiidden..nodes, int vector, float *temp-hidden..out)

int i~j;

float temp.Imoldl;

Loopli(num..hidden..nodes - 1)

I
temp-holdl = 0.0;

A-68



Looplj(numleatures)

tempiioldl += weight12(i]b] *data-.matrix][j~vectorl;

I
tenip.hidden-out[i] = 1.0/(1.0 + exp(-temp..holdl));

tempiiidden..outlnumiiidden..nodes] = 1 .O;/***Account for augment ation*s*/

compute..output-nodes(float **weight23, float *temp..idden..out, float *temp-out, int num..out-nodes, int
num-hidden..nodes, int output-.type)
f

int uj;

float temp..holdl;

Loopli(num-.out-nodes)

I
tempiioldl = 0.0;
Looplj(numiiidden..nodes - 1)

tempiioldl += weight23[i~b) * tempiiidden..outtj];

if (output-type == 0) /aa*If linear output***/

temp-out[i] = temp..holdl;

else if (output-type == 1) /***If nonlinear***/

temp..ant[i] = 1.0/(1.0 + exp(-temp-holdl));

A-69



Appendix B. Source Data

This appendix contains the source data for the performance figures given in Chapter
4. Tables B.1 through B.8 give the data for face verification accuracy, and Tables B.9
through B.16 provide the data for speaker verification.

Table B.1 Face verification accuracy when the subject's claimed identity is his true iden-
tity (two dimensions).

Claimed Identity is the True Identity (True Accept Accuracy)
Claimed ID Min-error Eigenvalue FoM
cmartin 100.0 % 100.0 % 100.0 %
dprescot 100.0 % 100.0 % 20.0 %
eingham 100.0 % 100.0 % 80.0 %
jcossent 100.0 % 100.0 % 80.0 %
jkeller 100.0 % 100.0 % 100.0 %
jmiller 100.0 % 100.0 % 100.0 %

Table B.2 Face verification accuracy when the subject's claimed identity is not his true
identity (two dimensions).

Claimed Identity is Not True Identity(True Reject Accuracy)
Claimed ID Min-error Eigenvalue FoM
cmartin 100.0 % 68.0 % 20.0 %
dprescot 84.0 % 100.0 % 40.0 %
eingham 96.0 % 80.0 % 64.0 %
jcossent 60.0 % 88.0 % 100.0 %
jkeller 20.0 % 68.0 % 16.0 %
jmiller 96.0 % 60.0 % 20.0 %

B-1



Table B.3 Face verification accuracy when the subject's claimed identity is his true iden-

tity (four dimensions).

Claimed Identity is the True Identity (True Accept Accuracy)
Claimed ID Min-error Eigenvalue FoM
cmartin 100.0 % 100.0 % 100.0 %
dprescot 100.0 % 100.0 % 80.0 %
eingham 100.0 % 100.0 % 80.0 %
jcossent 100.0 % 100.0 % 40.0 %
jkeller 100.0 % 100.0 % 100.0 %
jmiller 100.0 % 100.0 % 100.0 %

Table B.4 Face verification accuracy when the subject's claimed identity is not his true
identity (four dimensions).

Claimed Identity is Not True Identity (True Reject Accuracy
Claimed ID Min-error Eigenvalue FoM
cmartin 100.0 % 92.0 % 8.0_%
dprescot 100.0 % 100.0 % 64.0_%
eingham 100.0 % 80.0 % 72.0_%
jcossent 96.0 % 100.0 % 96.0_%
jkeller 64.0 % 80.0 % 48.0 %
jmiller 88.0 % 60.0 % 8.0%

B-2



Table B.5 Face verification accuracy when the subject's claimed identity is his true iden-
tity (six dimensions).

Claimed Identity is the True Identity (True Accept Accuracy)
Claimed ID Min-error Eigenvalue FoM
cmartin 100.0 % 100.0 % 80.0 %
dprescot 100.0 % 100.0 % 100.0 %
eingham 100.0 % 100.0 % 80.0 %
jcossent 100.0 % 100.0 % 100.0 %
jkeller 100.0 % 100.0 % 0.0 %
jmiller 100.0 % 100.0 % 100.0 %

Table B.6 Face verification accuracy when the subject's claimed identity is not his true
identity (six dimensions).

Claimed Identity is Not True Identity (True Reject Accuracy)
Claimed ID Min-error Eigenvalue FoM
cmartin 100.0 % 100.0 % 80.0 %
dprescot 100.0 % 100.0 % 80.0 %
eingham 100.0 % 100.0 % 16.0 %
jcossent 100.0 % 100.0 % 60.0 %
jkeller 80.0 % 88.0 % 72.0 %
jmiller 84.0 % 88.0 % 88.0 %

B-3



Table B.7 Face verification accuracy when the subject's claimed identity is his true iden-
tity keight dimensions).

Claimed Identity is the True Identity (True Accept Accuracy)_
Claimed ID Min-error Eigenvalue FoM
cmartin 100.0 % 100.0 % 100.0 %
dprescot 100.0 % 100.0 % 100.0 %
eingham 100.0 % 100.0 % 80.0 %
jcossent 100.0 % 100.0 % 40.0 %
jkeller 100.0 % 100.0 % 100.0 %
jmiller 100.0 % 100.0 % 100.0 %

Table B.8 Face verification accuracy when the subject's claimed identity is not his true
identity (eight dimensions).

Claimed Identity is Not True Identity (True Reject Accuracy)
Claimed ID Min-error Eigenvalue FoM
cmartin 100.0 % 100.0 % 28.0 %
dprescot 96.0 % 100.0 % 88.0 %
eingham 96.0 % 96.0 % 44.0 %
jcossent 100.0 % 96.0 % 72.0 %
jkeller 88.0 % 84.0 % 44.0 %
jmiller 100.0 % 100.0 % 88.0 %

B-4



Table B.9 Speaker verification accuracy when the subject's claimed identity is his true
identity (four dimensions).

Claimed Identity is the True Identity (True Accept Accuracy)
Claimed ID Min-error Eigenvalue FoM
cmartin 25.0 % 50.0 % 0.0 %
dprescot 100.0 % 100.0 % 100.0 %
jkeller 0.0 % 0.0 % 0.0 %
jmiller 100.0 % 100.0 % 0.0 %
jtreleav 0.0 % 100.0 % 100.0 %
kmccrae 50.0 % 0.0 % 100.0 %
mchin 75.0 % 25.0 % 25.0 %
rmacdona 0.0 % 0.0 % 100.0 %
wgool 0.0 % 100.0 % 100.0 %

Table B.10 Speaker verification accuracy when the subject's claimed identity is not his
true identity (four dimensions).

Claimed Identity is Not True Identity (True Reject Accuracy
Claimed ID Min-error Eigenvalue FoM
cmartin 59.4 % 84.4 % 78.1_%
dprescot 46.9 % 84.4 % 81.3 %
jkeller 93.8 % 65.6 % 100.0 %
jmiller 31.3 % 0.0 % 53.1%
jtreleav 84.4 % 25.0 % 28.1 %
kmccrae 34.4% 71.9% 56.3%
mchin 40.6 % 87.5 % 78.1%
rmacdona 68.8 % 81.3 % 37.5 %
wgool 62.5 % 25.0 % 28.1 %

B-5



Table B.11 Speaker verification accuracy when the subject's claimed identity is his true
identity (six dimensions).

Claimed Identity is the True Identity (True Accept Accuracy)
Claimed ID Min-error Eigenvalue FoM
cmartin 50.0 % 0.0 % 0.0 %
dprescot 100.0 % 100.0 % 100.0 %
jkeller 100.0 % 0.0 % 75.0 %
jmiller 100.0 % 50.0 % 0.0 %
jtreleav 100.0 % 100.0 % 100.0 %
kmccrae 100.0 % 25.0 % 100.0 %
mchin 50.0 % 0.0 % 25.0 %
rmacdona 0.0 % 75.0 % 50.0 %
wgool 100.0 % 0.0 % 100.0 %

Table B.12 Speaker verification accuracy when the subject's claimed identity is not his
true identity (six dimensions).

Claimed Identity is Not True Identity (True Reject Accuracy)
Claimed ID Min-error Eigenvalue FoM
cmartin 87.5 % 31.3 % 87.5 %
dprescot 46.9 % 87.5 % 87.5 %
jkeller 50.0 % 78.1 % 87.5 %
jmiller 21.9 % 59.4 % 28.1%
jtreleav 43.8 % 31.3 % 15.6 %
kmccrae 81.3 % 37.5 % 65.6 %
mchin 96.9 % 93.8 % 68.8 %
rmacdona 84.4 % 37.5 % 50.0 %
wgool 40.6 % 37.5 % 31.3 %

B-6



Table B.13 Speaker verification accuracy when the subject's claimed identity is his true
identity (eight dimensions).

Claimed Identity is the True Identity (True Accept Accuracy)
Claimed ID Min-error Eigenvalue FoM
cmartin 50.0 % 75.0 % 0.0 %
dprescot 75.0 % 100.0 % 100.0 %
jkeller 100.0 % 50.0 % 50.0 %
jmiller 100.0 % 100.0 % 25.0 %
jtreleav 100.0 % 100.0 % 100.0 %
kmccrae 100.0 % 0.0 % 100.0 %
mchin 75.0 % 0.0 % 25.0 %
rmacdona 0.0 % 0.0 % 100.0 %
wgool 100.0 % 100.0 % 100.0 %

Table B.14 Speaker verification accuracy when the subject's claimed identity is not his
true identity (eight dimensions).

Claimed Identity is Not True Identity (True Reject Accuracy)
Claimed ID Min-error Eigenvalue FoM
cmartin 78.1 % 78.1% 68.8 %
dprescot 34.4 % 81.3 % 78.1%
jkeller 53.1% 93.8 % 93.8 %
jmiller 40.6 % 12.5 % 28.1%
jtreleav 28.1% 28.1% 25.0 %
kmccrae 75.0 % 65.6 % 31.3 %
mchin 100.0 % 93.8 % 68.8 %
rmacdona 81.3 % 81.3 % 37.5 %
wgool 40.6 % 31.3 % 37.5 %

B-7



Table B.15 Speaker verification accuracy when the subject's claimed identity is his true
identity (ten dimensions).

Claimed Identity is the True Identity (True Accept Accuracy)
Claimed ID Min-error Eigenvalue FoM
cmartin 100.0 % 50.0 % 25.0 %
dprescot 100.0 % 75.0 % 100.0 %
jkeller 100.0 % 0.0 % 25.0 %
jmiller 100.0 % 0.0 % 100.0 %
jtreleav 100.0 % 100.0 % 100.0 %
kmccrae 100.0 % 100.0 % 100.0 %
mchin 100.0 % 0.0 % 25.0 %
rmacdona 75.0 % 0.0 % 75.0 %
wgool 25.0 % 100.0 % 100.0 %

Table B.16 Speaker verification accuracy when the subject's claimed identity is not his
true identity (ten dimensions).

Claimed Identity is Not True Identity (True Reject Accuracy)
Claimed ID Min-error Eiger,,-•lue FoM
cmartin 53.1 % 75.0 % 68.8 %
dprescot 50.0 % 87.5 % 84.4 %
jkeller 59.4 % 93.8 % 87.5 %
jmiller 78.1% 78.1% 37.5 %
jtreleav 81.3 % 25.0 % 25.0 %
kmccrae 87.5 % 18.8 % 37.5 %
mchin 75.0 % 93.8 % 68.8 %
rmacdona 65.6 % 62.5 % 34.4 %
wgool 78.1 % 25.0 % 34.4 %

B-8



Vita

Captain John G. Keller was born on 14 Sep 1957 in Moses Lake, Washington. He
enlisted in the United States Air Force in 1981, and upon completion of Basic Training and
Technical Training School was assigned to the 2167 Communication Squadron in Kalkar,
West Germany, as a Ground Radio electronics technician. In 1984 he was assigned to the
Joint Communication Support Element at MacDill Air Force Base, Florida, as a Ground
Radio technician/operator with the Joint Airborne Communication Center/Command Post
("Jackpot"). Captain Keller was accepted into the Airman Education and Commissioning
Program in 1987, and completed his Bachelor of Science degree in Electrical Engineering
at the University of Florida in May 1989. After completion of Officer Training School in
August 1989, he was commissioned as an officer in the United States Air Force and was
assigned to the 552 Airborne and Control Wing, Tinker Air Force Base, Oklahoma, as
an E-3 project management engineer. In 1991 he was assigned to the Oklahoma City Air
Logistics Center (also at Tinker Air Force Base) as a project management engineer for the
E-3 System Program Manager, and during this tour received his Master of Arts degree
in Computer Resource Management from Webster University. In May of 1992 he entered
into the School of Engineering, Air Force Institute of Technology, at Wright-Patterson Air
Force Base, Ohio, to pursue a Master of Science degree in Electrical Engineering.

Permanent address: 3423 Calumet Drive
Orlando Florida 32810

VITA-I



Bibliography

1. Atal, Bishnu S. "Automatic Recognition of Speakers From their Voices." Proceedings
of the IEEE 64(4). 460-475. 1976.

2. Atal, B.S. "Effectiveness of linear prediction characteristics of the speech wave for
automatic speaker identification and verification," Journal of the Acoustic Society of
America, 50(2):1304-1312 (June 1974).

3. Bennani, Younes and Patrick Gallinari. "On the Use of TDNN-Extracted Features In-
formation in Talker Identification." Proceedings of the 1991 International Conference
on Acoustics, Speech and Signal Processing. 385-388. 1991.

4. Bennani, Younes et. al. "A Connectionist Approach for Automatic Speaker Identifi-
cation." Proceedings of the 1990 International Conference on Acoustics, Speech and
Signal Processing. 265-268. 1990.

5. Bouattour, et al. "Neural Nets for Human Face Recognition," IEEE IJCNN, 111:700-
704 (June 1992).

6. Burns, Thomas J. A Non-Homogeneous Wavelet Multiresolution Analysis and its
Application to the Analyis of Motion. PhD dissertation, School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB, OH, December 1993.

7. Chair, Z. and P. K. Varshney. "Distributed Bayesian Hypothesis Testing with
Distributed Data Fusion," IEEE Transactions on Systems, Man, and Cybernetics,
18:5:695-699 (1988).

8. Chui, Charles K. An Introduction to Wavelets. Boston, MA: Academic Press, Inc.,
1992.

9. Colombi, John et al. "Multiple Day User Recognition Using Speech and Faces,"
Unpublished (1992).

10. Colombi, John M. Cepstral and Auditory Model Features for Speaker Recognition.
MS thesis, AFIT/GE/ENG/92D-11, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1992.

11. Cottrell, Garrison W. and Janet Metcalfe. EMPATH: Face, Emotion and Gender
Recognition Using Holons. San Mateo, CA: Morgan Kauffmann Publishers, Inc, 1991.

12. Cybenko, G. "Approximations by Superpositions of Sigmoidal Functions," Mathe-
matical Controls, Signals, and Systems (1989).

13. Davis, Steven B. and Paul Mermelstein. "Comparison of Parametric Representations
for Monosyllabic Word Recognition in Continuously Spoken Sentences," IEEE Trans-
actions ASSP, 28(4):357-366 (August 1980).

14. Fleming, Michael K. and Garrison W. Cottrell. "Categorization of Faces Using Un-
supervised Feature Extraction." IEEE International Joint Conference on Neural Net-
uworks2. 65-70. 1990.

15. Furui, Sadaoki. "Cepstral Analysis Techniques for Automatic Speaker Verification,"
IEEE Transactions ASSP, 29(2):254-272 (April 1981).

BIB-1



16. Gaganelis, D.A. and E.D. Frangoulis. "A novel approach to Speaker Verification."
Proceedings of the 1991 International Conference on Acoustics, Speech and Signal
Processing. 373-376. 1991.

17. Gay, Kevin P. Autonomous Face Segmentation. MS thesis, AFIT/GE/ENG/92S-06,
School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB
OH, September 1992.

18. Goble, James R. Face Recognition using the Discrete Cosine Transform. MS thesis,
AFIT/GE/ENG/91D-21, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, September 1991.

19. Goble, James R. et al. "A Facial Feature Communications Interface for the Non-
Vocal," IEEE Engineering in Medicine and Biology, 1-4 (September 1993).

20. Gordon, Gaile G. "Face Recognition Based on Depth Maps and Surface Curvature,"
SPIE, Geometric Methods in Computer Vision, 1570:234-247 (1991).

21. Govindaraju, et al. "Locating Human Faces in Newspaper Photographs," IEEE Com-
puter Vision and Pattern Recognition, 549-554 (1989).

22. Hattori, Hiraoki. "Text-independent Speaker recognition using Neural Networks."
Proceedings of the 1992 International Conference on Acoustics, Speech and Signal
Processing. 153-156. 1992.

23. Higgins, A. L. and L. G. Bahler. "Text-Independent Speaker Verification By Discrim-
inator Counting." Proceedings of the 1991 International Conference on Acoustics,
Speech and Signal Processing. 405-408. 1991.

24. Hush, Don R. and Bill G. Home. "Progress in Supervised Neural Networks: What's
New Since Lippmann?," IEEE Signal Processing Magazine, 8-39 (January 1993).

25. Jia, Xiaoguang and Mark S. Nixon. "Profile feature extraction via the Walsh trans-
form for face recognition," SPIE, Intelligent Robots and Computer Vision, 1825:46-52
(1992).

26. Kao, Yu-Hang, et al. "Free-Text Identification over long distance telephone channel
using hypothesized phonetic segmentation." Proceeedings of the 1992 International

Conference on Acoustics, Speech and Signal Processing. 177-180. 1992.

27. Krepp, Dennis L. Face Recognition with Neural Networks. MS thesis,
AFIT/GE/ENG/GE-92D, School of Engineering, Air Force Institute oi Technology
(AU), Wright-Patterson AFB OH, December 1992.

28. Krzysztofowicz, Roman and Dou Long. "Fusion of Detection Probabilities and Com-
parison of Multisensor Systems," IEEE Transactions on Systems, Man, and Cyber-
netics, 20:3:665-677 (June 1990).

29. Levinson, Stephen E. and David B. Roe. "A Perspective on Speaker Recognition,"
IEEE Communications Magazine, 28-34 (January 1990).

30. Linde, Y. et al. "An Algorithm for Vector Quantizer Design," IEEE Transactions on
Communication, 28:84-94 (Jan 1980).

BIB-2



31. Liu, W. et al. "Study of Line Spectrum Pair Frequencies for Speaker Recognition."
Proceeedings of the 1990 International Conference on Acoustics, Speech and Signal
Processing. 277-280. 1990.

32. MacDonald, Robert P. Optical Wavelet Transform for Fingerprint Identification.
MS thesis, AFIT/GE/ENG/GEO-93D, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1993.

33. Manjunath, BS. "A Feature Based Approach to Face Recognition," IEEE Computer
Vision and Pattern Recogntion, 373-378 (1992).

34. Mannaert, Herwig and Andre Oosterlinck. "Self-organizing System for Analysis and
Identification of Human Faces," SPIE, Applications of Digital Image Processing XIII,
1349:227-232 (1990).

35. Matsui, Tomoko and Sadaoki Furui. "A Text-Independent Speaker Recognition
Method Robust Against Utterance Variations." Proceedings of the 1991 International
Conference on Acoustics, Speech and Signal Processing. 377-380. 1991.

36. McCrae, Kimberley A. Multispectral Image Processing. MS thesis,
AFIT/GE/ENG/GEO-93D, School of Engineering, Air Force Institute of Technol-
ogy (AU), Wright-Patterson AFB OH, December 1993.

37. Oglesby, J. and J.S. Mason. "Optimisation of Neural Models for Speaker Identifi-
cation." Proceedings of the 1990 International Conference on Acoustics, Speech and
Signal Processing. 261-264. 1990.

38. Oglesby, J. and J.S. Mason. "Radial Basis Function Networks for Speaker Recog-
nition." Proceedings of the 1991 International Conference on Acoustics, Speech and
Signal Processing. 393-396. 1991.

39. Parsons, Thomas W. Voice and Speech Processing. New York, NY: McGraw-Hill,
Inc., 1987.

40. Poritz, Alan B. "Linear Prediction of Hidden Markov Models." Proceedings of the
1982 International Conference on Acoustics, Speech and Signal Processing. 1291-
1294. 1982.

41. Prescott, D. Neale. Speaker Identification Using Data Fusion with Auditory Models.
MS thesis, AFIT/GE/ENG/GE-94M, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, March 1994.

42. Prokoski, Francine J., et al. "Identification of Individuals by Means of Facial Thermog-
raphy," International Carnahan Conference on Security Technology: Crime Counter-
measures, 120-125 (1992).

43. Riebman, A. R. and L. W. Nolte. "Design and Performance Comparison of Dis-
tributed Detection Networks," IEEE Transactions on Aerospace Electronics Systems,
23:6:789-797 (1987).

44. Riebman, A. R. and L. W. Nolte. "Optimal Detection and Performance of Distributed
Sensor Systems," IEEE Transactions on Aerospace Electronics Systems, 23:1:24-30
(1987).

BIB-3



45. Rogers, Steven K. and Matthew Kabrisky. An Introduction to Biological and Artificial
Neural Networks. Bellingham, Washington: SPIE Optical Engineering Press, 1991.

46. Rose, Richard C. and Douglas A. Reynolds. "Text Independent Speaker Identifica-
tion Using Automatic Acoustic Segmentation." Proceedings of the 1990 International
Conference on Acoustics, Speech and Signal Processing. 293-296. 1990.

47. Rose, Richard C. et al. "Robust Speaker Identification in Noisy Environments Using
Noise Adaptive Speaker Models." Proceedings of the 1991 International Conference
on Acoustics, Speech and Signal Processing. 401-404. 1991.

48. Rosenburg, Aaron E., et al. "Sub-Word Unit Talker Verification Using Hidden Markov
Models." Proceedings of the 1990 International Conference on Acoustics, Speech and
Signal Processing. 269-272. 1990.

49. Rosenburg, Aaron E., et al. "Connected Word Talker Verification Using Whole Word
Markov Models." Proceedings of the 1991 International Conference on Acoustics,
Speech and Signal Processing. 381-384. 1991.

50. Ruck, Dennis et al. "Characterization of Multilayer Perceptrons for Target Recog-
nition." Proceedings of the Sixth Annual Conference on Aerospace Applications of
Artificial Intelligence. October 1990.

51. Rudasi, Laszlo and Stephen A. Zahorian. "Text-Independent Talker Identification
With Neural Networks." Proceedings of the 1991 International Conference on Acous-
tics, Speech and Signal Processing. 389-392. 1991.

52. Runyon, Kenneth R. Automated Face Recognition System. MS thesis,
AFIT/GE/ENG/GE-92D, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1992.

53. Samal, Ashok and Prasana A. Iyengar. "Automatic Recognition and Analysis of Hu-
man Faces and Facial Expressions: A Survey," Pattern Recognition, 25:65-77 (1992).

54. Savic, M. and J. Sorenson. "Phoneme Based Speaker Verification." Proceedings of the
1992 International Conference on Acoustics, Speech and Signal Processing. 165-168.
1992.

55. Savic, Michael and Sunil K. Gupta. "Variable Parameter Speaker Verification System
based on Hidden Markov Models." Proceedings of the 1990 International Conference
on Acoustics, Speech and Signal Processing. 281-284. 1990.

56. Schwartz, T. and others. "The application of Probability Density Estimation to Text-
independent Speaker Identification." Proceedings of the 1982 International Conference
on Acoustics, Speech and Signal Processing. 1649-1652. 1982.

57. Seitz, Peter and Martin Bichsel. "The digital doorkeeper-Automatic face recognition
with the computer," IEEE International Carnahan Conference on Security Technol-

ogy, 77-83 (1991).

58. Shartle, Gary F. Handtwritten Word Recognition Based on Fourier Coefficients. MS
thesis, AFIT/GE/ENG/GEO-93D, School of Engineering, Air Force Institute of Tech-
nology (AU), Wright-Patterson AFB OH, December 1993.

BIB-4



59. Soong, et al. "A Vector Quantization Approach to Speaker Recognition." Proceedings
of the 1985 International Conference on Acoustics, Speech and Signal Processing.
387-390. 1985.

60. Soong, Frank K. and Aaron E. Rosenburg. "On the Use of Instantaneous and Tran-
sitional Spectral Information in Speaker Recognition," IEEE Transactions ASSP,
36(6):871-879 (June 1988).

61. Suarez, Pedro. Face Recognition uith the Karhunen-Loive Transform. MS thesis,
AFIT/GE/ENG/GE-91D, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1991.

62. Thomopoulos, Stelios C. A. "Sensor Integration and Data Fusion," SPIE Sensor
Fusion II: Human and Machine Strategies, 1198:178-191 (1989).

63. Tou, Julius T. and Rafael C. Gonzalez. Pattern Recognition Principles. Reading,
MA: Addison-Wesley Publishing, 1974.

64. Tseng, Belle, et d. "Continuous Probabilistic Acoustic Map for Speaker Recognition."
Proceedings of the 1992 International Conference on Acoustics, Speech and Signal
Processing. 161-164. 1992.

65. Turk, Matthew A. and Alex P. Pentland. "Recognition in Face Space," SPIE, Intel-
ligent Robots and Computer Vision IX, 1381:43-54 (1990).

66. Xu, Lei, et al. "Methods of Combining Multiple Classifiers and Their Applications
to Handwriting Recognition," IEEE Transactions on Systems, Man, and Cybernetics,
22(3):418-435 (1992).

BIB-5



59. Soong, et al. "A Vector Quantization Approach to Speaker Recognition." Proceedings
of the 1985 International Conference on Acoustics, Speech and Signal Processing.
387-390. 1985.

60. Soong, Frank K. and Aaron E. Rosenburg. "On the Use of Instantaneous and Tran-
sitional Spectral Information in Speaker Recognition," IEEE Transactions ASSP,
36(6):871-879 (June 1988).

61. Suarez, Pedro. Face Recognition with the Karhunen-Lo~ve Transform. MS thesis,
AFIT/GE/ENG/GE-91D, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1991.

62. Thomopoulos, Stelios C. A. "Sensor Integration and Data Fusion," SPIE Sensor
Fusion II: Human and Machine Strategies, 1198:178-191 (1989).

63. Tou, Julius T. and Rafael C. Gonzalez. Pattern Recognition Principles. Reading,
MA: Addison-Wesley Publishing, 1974.

64. Tseng, Belle, et al. "Continuous Probabilistic Acoustic Map for Speaker Recognition."
Proceedings of the 1992 International Conference on Acoustics, Speech and Signal
Processing. 161-164. 1992.

65. Turk, Matthew A. and Alex P. Pentland. "Recognition in Face Space," SPIE, Intel-
ligent Robots and Computer Vision IX, 1381:43-54 (1990).

66. Xu, Lei, et al. "Methods of Combining Multiple Classifiers and Their Applications
to Handwriting Recognition," IEEE Transactions on Systems, Man, and Cybernetics,
22(3):418-435 (1992).

BIB-5



December 1993 Master's Thesis

IDENTITY VERIFICATION THROUGH
THE FUSION OF FACE
AND SPEAKER RECOGNITION

John G. Keller

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/G E/ENG/93D-20

Lt Col Rodney Winter
NSA/R221
Fort Meade, MD 20755-6000

Distribution Unlimited

Abstract

In this research, face recognition and speaker identification systems are each converted into verification systems.
The two verification systems are then fused to form a single identity verification system. Finally, the use of the
Karhunen-Lo6ve Transform (KLT) for dimensional reduction is examined for suitability in the verification tas.

The base face recognition system used the KLT for feature reduction and a back-propagation neural net for
classification. Verification involved training a net for each individual in the database for two classes of outputs,
'Joe' or 'not Joe.' The base speaker identification system used Cepstral analysis for feature extraction and
a distortion measure for classification. Verification in this case involved performing the KLT on the Cepstral
coefficients and then classifying using a two-class neural net for each individual, similarly to the face verifier
implementation.

KLT feature reduction is compared to alternative linear and non-linear methods, and the KLT is found to
provide superior performance. The fusion of the two base verification systems is shown to provide superior
performance over either system alone.

Pattern Recognitioii, Recognition, Verification, Biometry 185

UNCLASSIFIED . UNCLASSIFIED UNCLASSIFIED UL


